Hydrogen as an Energy Carrier — A Guide

1988 ◽  
pp. 1-10
Author(s):  
C. J. Winter
Keyword(s):  
Author(s):  
Jie Wu ◽  
Jia-hui Li ◽  
Yang-Xin Yu

Ammonia (NH3) is an essential ingredient for fertilizer production and a carbon-free energy carrier for engineering applications. Searching for novel electrocatalysts with low onset potential, high selectivity and excellent stability...


Author(s):  
Kuo-Wei Huang ◽  
Sudipta Chatterjee ◽  
Indranil Dutta ◽  
Yanwei Lum ◽  
Zhiping Lai

Formic acid has been proposed as a hydrogen energy carrier because of its many desirable properties, such as low toxicity and flammability, and a high volumetric hydrogen storage capacity of...


2010 ◽  
Vol 55 (29) ◽  
pp. 3350-3355
Author(s):  
HaiDong Wang ◽  
ZengYuan Guo

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3732
Author(s):  
Muhammad Heikal Hasan ◽  
Teuku Meurah Indra Mahlia ◽  
M. Mofijur ◽  
I.M. Rizwanul Fattah ◽  
Fitri Handayani ◽  
...  

Global energy sources are being transformed from hydrocarbon-based energy sources to renewable and carbon-free energy sources such as wind, solar and hydrogen. The biggest challenge with hydrogen as a renewable energy carrier is the storage and delivery system’s complexity. Therefore, other media such as ammonia for indirect storage are now being considered. Research has shown that at reasonable pressures, ammonia is easily contained as a liquid. In this form, energy density is approximately half of that of gasoline and ten times more than batteries. Ammonia can provide effective storage of renewable energy through its existing storage and distribution network. In this article, we aimed to analyse the previous studies and the current research on the preparation of ammonia as a next-generation renewable energy carrier. The study focuses on technical advances emerging in ammonia synthesis technologies, such as photocatalysis, electrocatalysis and plasmacatalysis. Ammonia is now also strongly regarded as fuel in the transport, industrial and power sectors and is relatively more versatile in reducing CO2 emissions. Therefore, the utilisation of ammonia as a renewable energy carrier plays a significant role in reducing GHG emissions. Finally, the simplicity of ammonia processing, transport and use makes it an appealing choice for the link between the development of renewable energy and demand.


Sign in / Sign up

Export Citation Format

Share Document