A Comparison of Neuronal Discharge Recorded in the Sensori-Motor Cortex, Parietal Cortex and Dentate Nucleus of the Monkey During Arm Movements Triggered by Light, Sound or Somesthetic Stimuli

Author(s):  
Y. Lamarre ◽  
G. Spidalieri ◽  
C. E. Chapman
1994 ◽  
Vol 72 (5) ◽  
pp. 2280-2301 ◽  
Author(s):  
M. J. Prud'homme ◽  
J. F. Kalaska

1. We studied the activity of 254 cells in the primary somatosensory cortex (SI) responding to inputs from peripheral proprioceptors in a variety of tasks requiring active reaching movements of the contralateral arm. 2. The majority of cells with receptive fields on the proximal arm (shoulder and elbow) were broadly and unimodally tuned for movement direction, often with approximately sinusoidal tuning curves similar to those seen in motor and parietal cortex. 3. The predominant temporal response profiles were directionally tuned phasic bursts during movement and tonic activity that varied with different arm postures. 4. Most cells showed both phasic and tonic response components to differing degrees, and the population formed a continuum from purely phasic to purely tonic cells with no evidence of separate distinct phasic and tonic populations. This indicates that the initial cortical neuronal correlates of the introspectively distinguishable sensations of movement and position are represented in an overlapping or distributed manner in SI. 5. The directional tuning of the phasic and tonic response components of most cells was generally similar, although rarely identical. 6. We tested 62 cells during similar active and passive arm movements. Many cells showed large differences in their responses in the two conditions, presumably due to changes in peripheral receptor discharge during active muscle contractions. 7. We tested 86 cells in a convergent movement task in which monkeys made reaching movements to a single central target from eight peripheral starting positions. A majority of the cells (46 of 86, 53.5%) showed a movement direction-related hysteresis in which their tonic activity after movement to the central target varied with the direction by which the arm moved to the target. The directionality of this hysteresis was coupled with the movement-related directional tuning of the cells. 8. We recorded the discharge of 93 cells as the monkeys performed the task while compensating for loads in different directions. The large majority of cells showed a statistically significant modulation of activity as a function of load direction, which was qualitatively similar to that seen in motor cortex under similar task conditions. Quantitatively, however, the sensitivity of SI proprioceptive cells to loads was less than that seen in motor cortex but greater than in parietal cortex. 9. We interpret these results in terms of their implications for the central representation of the spatiotemporal form (“kinematics”) of arm movements and postures. Most importantly, the results emphasize the important influence of muscle contractile activity on the central proprioceptive representation of active movements.


1995 ◽  
Vol 192 (3) ◽  
pp. 189-192 ◽  
Author(s):  
Bernard Bioulac ◽  
Pierre Burbaud ◽  
Daniel Varoqueaux

2019 ◽  
Vol 116 (45) ◽  
pp. 22844-22850 ◽  
Author(s):  
Teppei Ebina ◽  
Keitaro Obara ◽  
Akiya Watakabe ◽  
Yoshito Masamizu ◽  
Shin-Ichiro Terada ◽  
...  

Optogenetics is now a fundamental tool for investigating the relationship between neuronal activity and behavior. However, its application to the investigation of motor control systems in nonhuman primates is rather limited, because optogenetic stimulation of cortical neurons in nonhuman primates has failed to induce or modulate any hand/arm movements. Here, we used a tetracycline-inducible gene expression system carrying CaMKII promoter and the gene encoding a Channelrhodopsin-2 variant with fast kinetics in the common marmoset, a small New World monkey. In an awake state, forelimb movements could be induced when Channelrhodopsin-2−expressing neurons in the motor cortex were illuminated by blue laser light with a spot diameter of 1 mm or 2 mm through a cranial window without cortical invasion. Forelimb muscles responded 10 ms to 50 ms after photostimulation onset. Long-duration (500 ms) photostimulation induced discrete forelimb movements that could be markerlessly tracked with charge-coupled device cameras and a deep learning algorithm. Long-duration photostimulation mapping revealed that the primary motor cortex is divided into multiple domains that can induce hand and elbow movements in different directions. During performance of a forelimb movement task, movement trajectories were modulated by weak photostimulation, which did not induce visible forelimb movements at rest, around the onset of task-relevant movement. The modulation was biased toward the movement direction induced by the strong photostimulation. Combined with calcium imaging, all-optical interrogation of motor circuits should be possible in behaving marmosets.


2005 ◽  
Vol 94 (4) ◽  
pp. 2353-2378 ◽  
Author(s):  
Lauren E. Sergio ◽  
Catherine Hamel-Pâquet ◽  
John F. Kalaska

We recorded the activity of 132 proximal-arm-related neurons in caudal primary motor cortex (M1) of two monkeys while they generated either isometric forces against a rigid handle or arm movements with a heavy movable handle, in the same eight directions in a horizontal plane. The isometric forces increased in monotonic fashion in the direction of the force target. The forces exerted against the handle in the movement task were more complex, including an initial accelerating force in the direction of movement followed by a transient decelerating force opposite to the direction of movement as the hand approached the target. EMG activity of proximal-arm muscles reflected the difference in task dynamics, showing directional ramplike activity changes in the isometric task and reciprocally tuned “triphasic” patterns in the movement task. The apparent instantaneous directionality of muscle activity, when expressed in hand-centered spatial coordinates, remained relatively stable during the isometric ramps but often showed a large transient shift during deceleration of the arm movements. Single-neuron and population-level activity in M1 showed similar task-dependent changes in temporal pattern and instantaneous directionality. The momentary dissociation of the directionality of neuronal discharge and movement kinematics during deceleration indicated that the activity of many arm-related M1 neurons is not coupled only to the direction and speed of hand motion. These results also demonstrate that population-level signals reflecting the dynamics of motor tasks and of interactions with objects in the environment are available in caudal M1. This task-dynamics signal could greatly enhance the performance capabilities of neuroprosthetic controllers.


2009 ◽  
Vol 105 (7) ◽  
pp. 07B321 ◽  
Author(s):  
Masakuni Iwahashi ◽  
Yohei Koyama ◽  
Akira Hyodo ◽  
Takehito Hayami ◽  
Shoogo Ueno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document