Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements

1994 ◽  
Vol 72 (5) ◽  
pp. 2280-2301 ◽  
Author(s):  
M. J. Prud'homme ◽  
J. F. Kalaska

1. We studied the activity of 254 cells in the primary somatosensory cortex (SI) responding to inputs from peripheral proprioceptors in a variety of tasks requiring active reaching movements of the contralateral arm. 2. The majority of cells with receptive fields on the proximal arm (shoulder and elbow) were broadly and unimodally tuned for movement direction, often with approximately sinusoidal tuning curves similar to those seen in motor and parietal cortex. 3. The predominant temporal response profiles were directionally tuned phasic bursts during movement and tonic activity that varied with different arm postures. 4. Most cells showed both phasic and tonic response components to differing degrees, and the population formed a continuum from purely phasic to purely tonic cells with no evidence of separate distinct phasic and tonic populations. This indicates that the initial cortical neuronal correlates of the introspectively distinguishable sensations of movement and position are represented in an overlapping or distributed manner in SI. 5. The directional tuning of the phasic and tonic response components of most cells was generally similar, although rarely identical. 6. We tested 62 cells during similar active and passive arm movements. Many cells showed large differences in their responses in the two conditions, presumably due to changes in peripheral receptor discharge during active muscle contractions. 7. We tested 86 cells in a convergent movement task in which monkeys made reaching movements to a single central target from eight peripheral starting positions. A majority of the cells (46 of 86, 53.5%) showed a movement direction-related hysteresis in which their tonic activity after movement to the central target varied with the direction by which the arm moved to the target. The directionality of this hysteresis was coupled with the movement-related directional tuning of the cells. 8. We recorded the discharge of 93 cells as the monkeys performed the task while compensating for loads in different directions. The large majority of cells showed a statistically significant modulation of activity as a function of load direction, which was qualitatively similar to that seen in motor cortex under similar task conditions. Quantitatively, however, the sensitivity of SI proprioceptive cells to loads was less than that seen in motor cortex but greater than in parietal cortex. 9. We interpret these results in terms of their implications for the central representation of the spatiotemporal form (“kinematics”) of arm movements and postures. Most importantly, the results emphasize the important influence of muscle contractile activity on the central proprioceptive representation of active movements.

1995 ◽  
Vol 73 (6) ◽  
pp. 2563-2567 ◽  
Author(s):  
S. H. Scott ◽  
J. F. Kalaska

1. Neuronal activity was recorded in the motor cortex of a monkey that performed reaching movements with the use of two different arm postures. In the first posture (control), the monkey used its natural arm orientation, approximately in the sagittal plane. In the second posture (abducted), the monkey had to adduct its elbow nearly to shoulder level to grasp the handle. The path of the hand between targets was similar in both arm postures, but the joint kinematics and kinetics were different. 2. In both postures, the activity of single cells was often broadly tuned with movement direction and static arm posture over the targets. In a large proportion of cells, either the level of tonic activity, the directional tuning, or both, varied between the two postures during the movement and target hold periods. 3. For most directions of movement, there was a statistically significant difference in the direction of the population vector for the two arm postures. Furthermore, whereas the population vector tended to point in the direction of movement for the control posture, there was a poorer correspondence between the direction of movement and the population vector for the abducted posture. These observed changes are inconsistent with the notion that the motor cortex encodes purely hand trajectory in space.


1991 ◽  
Vol 66 (2) ◽  
pp. 429-443 ◽  
Author(s):  
P. Burbaud ◽  
C. Doegle ◽  
C. Gross ◽  
B. Bioulac

1. The properties of parietal neurons were studied in four adult rhesus monkeys during fast arm movements. The animals were trained to perform flexion or extension of the forearm about the elbow in response to specific auditory cues. Single neuron activity was recorded in 272 area 5 neurons, 81 neurons of the somatosensory cortex, and 92 neurons of the motor cortex. 2. In area 5, 42% of neuronal changes occurred before movement onset (early changes) and 58% after (late changes), with 21% before the earliest electromyogram. The range of modification in activity took place between 260 ms before movement onset and 180 ms after. Complex receptive fields were found in area 5 with a greater proportion among the late neurons (72%) than among the early neurons (32%). 3. Different patterns of activity were observed in neurons recorded in both movement directions. Reciprocal neurons represented 52% of the motor cortex neurons and 41% of the neurons in the somatosensory cortex but only 14% of the area 5 neurons. Of the remainder area 5 neurons, 46% were direction-sensitive neurons and 39% coactivated neurons. This suggests a more complex encoding of movement direction in area 5 than in area 2 or 4. 4. Temporal characteristics of the neuronal bursts were quantitatively analyzed in areas 5, 2, and 4. Neuronal burst duration was longer in area 5 than in the other areas. Above all, a variability of burst parameters, which did not depend on variable movement execution, was noticed in area 5. Therefore neuronal activity in this cortical area cannot be simply explained by a convergence of sensory and motor inputs but may depend on the behavioral context in which the movement is performed. 5. A correlation between neuronal burst duration and movement duration was found in 41% of area 2 neurons. In area 5, this correlation was observed in 20% of the late neurons and in 14% of the early neurons. A correlation between neuronal discharge frequency and movement velocity was found in 34% of area 2 neurons and 24% of area 4 neurons. About 16% of both late and early neurons in area 5 showed such a correlation. These neurons received polyarticular input, and it is suggested that they may be involved in the kinematic encoding of polyarticular movements. 6. A topographic and functional organization of area 5 was noticed. In anterior area, 5, 83% of the neurons had receptive fields and most of the reciprocal neurons and those exhibiting a correlation with movement parameters were found there.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 77 (2) ◽  
pp. 826-852 ◽  
Author(s):  
Stephen H. Scott ◽  
John F. Kalaska

Scott, Stephen H. and John F. Kalaska. Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J. Neurophysiol. 77: 826–852, 1997. This study shows that the discharge of many motor cortical cells is strongly influenced by attributes of movement related to the geometry and mechanics of the arm and not only by spatial attributes of the hand trajectory. The activity of 619 directionally tuned cells was recorded from the motor cortex of two monkeys during reaching movements with the use of similar hand paths but two different arm orientations, in the natural parasagittal plane and abducted into the horizontal plane. Nearly all cells (588 of 619, 95%) showed statistically significant changes in activity between the two arm orientations [analysis of variance (ANOVA), P < 0.01]. A majority of cells showed a significant change in their overall level of activity (ANOVA, main effect of task, P < 0.01) between arm orientations before, during, and after movement. Many cells (433 of 619, 70%) also showed a significant change in the relation of their discharge with movement direction(ANOVA, task × direction interaction term, P < 0.01) during movement, including changes in the dynamic range of discharge with movement and changes in the directional preference of cells that were directionally tuned in both arm orientations. Similar effects were seen for the discharge of cells while the monkey maintained constant arm postures over the different peripheral targets with the use of different arm orientations. Repeated data files from the same cell with the use of the same arm orientation showed only small changes in the level of discharge or in directional tuning, suggesting that changes in cell discharge between arm orientations cannot be explained by random temporal variations in cell activity. The distribution of movement-related preferred directions of the whole sample differed between arm orientations, and also differed strongly between cells receiving passive input predominantly from the shoulder or elbow. The electromyographic activity of most prime mover muscles at the shoulder and elbow was also strongly affected by arm orientation, resulting in changes in overall level of activity and/or directional tuning that often resembled those of the proximal arm-related motor cortical cells. A mathematical model that represented movements in terms of movement direction centered on the hand could not account for any of the arm-orientation-related response changes seen in this task, whereas models in intrinsic parameter spaces of joint kinematics and joint torques predicted many of the effects.


1999 ◽  
Vol 81 (2) ◽  
pp. 875-894 ◽  
Author(s):  
M.T.V. Johnson ◽  
J. D. Coltz ◽  
M. C. Hagen ◽  
T. J. Ebner

Johnson, M.T.V., J. D. Coltz, M. C. Hagen, and T. J. Ebner. Visuomotor processing as reflected in the directional discharge of premotor and primary motor cortex neurons. J. Neurophysiol. 81: 875–894, 1999. Premotor and primary motor cortical neuronal firing was studied in two monkeys during an instructed delay, pursuit tracking task. The task included a premovement “cue period,” during which the target was presented at the periphery of the workspace and moved to the center of the workspace along one of eight directions at one of four constant speeds. The “track period” consisted of a visually guided, error-constrained arm movement during which the animal tracked the target as it moved from the central start box along a line to the opposite periphery of the workspace. Behaviorally, the animals tracked the required directions and speeds with highly constrained trajectories. The eye movements consisted of saccades to the target at the onset of the cue period, followed by smooth pursuit intermingled with saccades throughout the cue and track periods. Initially, an analysis of variance (ANOVA) was used to test for direction and period effects in the firing. Subsequently, a linear regression analysis was used to fit the average firing from the cue and track periods to a cosine model. Directional tuning as determined by a significant fit to the cosine model was a prominent feature of the discharge during both the cue and track periods. However, the directional tuning of the firing of a single cell was not always constant across the cue and track periods. Approximately one-half of the neurons had differences in their preferred directions (PDs) of >45° between cue and track periods. The PD in the cue or track period was not dependent on the target speed. A second linear regression analysis based on calculation of the preferred direction in 20-ms bins (i.e., the PD trajectory) was used to examine on a finer time scale the temporal evolution of this change in directional tuning. The PD trajectories in the cue period were not straight but instead rotated over the workspace to align with the track period PD. Both clockwise and counterclockwise rotations occurred. The PD trajectories were relatively straight during most of the track period. The rotation and eventual convergence of the PD trajectories in the cue period to the preferred direction of the track period may reflect the transformation of visual information into motor commands. The widely dispersed PD trajectories in the cue period would allow targets to be detected over a wide spatial aperture. The convergence of the PD trajectories occurring at the cue-track transition may serve as a “Go” signal to move that was not explicitly supplied by the paradigm. Furthermore, the rotation and convergence of the PD trajectories may provide a mechanism for nonstandard mapping. Standard mapping refers to a sensorimotor transformation in which the stimulus is the object of the reach. Nonstandard mapping is the mapping of an arbitrary stimulus into an arbitrary movement. The shifts in the PD may allow relevant visual information from any direction to be transformed into an appropriate movement direction, providing a neural substrate for nonstandard stimulus-response mappings.


1993 ◽  
Vol 69 (4) ◽  
pp. 1136-1149 ◽  
Author(s):  
P. A. Fortier ◽  
A. M. Smith ◽  
J. F. Kalaska

1. The responses of 262 motor cortex cells and 223 cerebellar neurons were recorded during whole-arm reaching movements toward targets lights in eight evenly distributed directions radiating from a common central starting position. The reaching movements were followed by a 2-s target hold period where a fixed arm posture was actively maintained to stabilize the hand over the target light. 2. Cerebellar neurons had a higher mean tonic discharge rate while holding over the starting position (22.9 imp/s) than did motor cortex cells (12.5 imp/s). The mean population response curve describing the changes in activities with movement direction was likewise shifted toward higher frequencies in the cerebellum compared with the motor cortex, but the amplitude of the two curves was about equal. Therefore, the baseline discharges of cerebellar neurons were higher, but their changes in activity during movement were similar to those of motor cortical cells. 3. Motor cortex neurons were more strongly related to active maintenance of different arm postures than were cerebellar units. This was shown by a larger posture-related population response curve in the motor cortex (half-wave amplitude of cosine function was 11.2 imp/s, compared with 7.0 imp/s for cerebellar neurons), which represented the average response curve calculated from all the cells of the population. Furthermore, the motor cortex population had a higher percentage of single cells with tonic responses while the hand was held over different targets (tonic and phasic-tonic cells composed 57% of motor cortex population, compared with 38% of cerebellar population). Proportionately more cerebellar cells were phasically related to the movements. 4. The majority of motor cortex cells (58%) showed reciprocal changes relative to the center-hold time activity where the activity increased for movements in the preferred direction and decreased for movements in the opposite direction. Most of the remaining cells (40%) showed graded changes where the activity increased gradually as reaching was directed closer to the preferred direction. In contrast, the most common cerebellar response pattern was graded (38%). Only 26% were reciprocal and 18% were non-directional. The remaining 2% of motor cortical cells and 18% of cerebellar neurons could not be readily assigned to any of these three response classes. 5. Sector widths were calculated to measure the dispersion of individual cerebellar and motor cortical cell activities about the eight movement directions. Sector widths calculated from the absolute activities were always broader for cerebellar neurons (i.e., the cells were more broadly tuned).(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 91 (4) ◽  
pp. 1748-1762 ◽  
Author(s):  
Yoram Ben-Shaul ◽  
Rotem Drori ◽  
Itay Asher ◽  
Eran Stark ◽  
Zoltan Nadasdy ◽  
...  

Natural actions can be described as chains of simple elements, whereas individual motion elements are readily concatenated to generate countless movement sequences. Sequence-specific neurons have been described extensively, suggesting that the motor system may implement temporally complex motions by using such neurons to recruit lower-level movement neurons modularly. Here, we set out to investigate whether activity of movement-related neurons is independent of the sequential context of the motion. Two monkeys were trained to perform linear arm movements either individually or as components of double-segment motions. However, comparison of neuronal activity between these conditions is delicate because subtle kinematic variations generally occur within different contexts. We therefore used extensive procedures to identify the contribution of variations in motor execution to differences in neuronal activity. Yet, even after application of these procedures we find that neuronal activity in the motor cortex (PMd and M1) associated with a given motion segment differs between the two contexts. These differences appear during preparation and become even more prominent during motion execution. Interestingly, despite context-related differences on the single-neuron level, the population as a whole still allows a reliable readout of movement direction regardless of the sequential context. Thus the direction of a movement and the sequential context in which it is embedded may be simultaneously and reliably encoded by neurons in the motor cortex.


NeuroImage ◽  
2019 ◽  
Vol 191 ◽  
pp. 234-242 ◽  
Author(s):  
Caterina Magri ◽  
Sara Fabbri ◽  
Alfonso Caramazza ◽  
Angelika Lingnau

Sign in / Sign up

Export Citation Format

Share Document