Mac-1+ Bone Marrow Cells Include Precursors of B Cells and T Cells

Author(s):  
K. L. Holmes ◽  
J. S. Lee ◽  
H. C. Morse
2003 ◽  
Vol 64 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Manuel R Carreno ◽  
Laphalle Fuller ◽  
James M Mathew ◽  
Gaetano Ciancio ◽  
George W Burke ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 431-431
Author(s):  
Hidekazu Nishikii ◽  
Antonio Pierini ◽  
Yasuhisa Yokoyama ◽  
Takaharu Kimura ◽  
Hye-Sook Kwon ◽  
...  

Abstract Background: Foxp3+regulatory T cells (Treg) are a subpopulation of T cells, which regulate the immune system, maintain self-tolerance and enhance immune tolerance after transplantation. It was also reported that recipient derived Treg could provide immune privilege niche to allogeneic hematopoietic stem cells (HSC) after transplantation. However, the precise role of Treg in hematopoiesis has not been fully elucidated. Methods: We used Foxp3-DTR mice (B6, CD45.2) for in vivo depletion of Treg through diphtheria toxin (DT) injection and investigated whether Treg depletion would affect hematopoiesis derived from HSC. To investigate whether Treg depletion affects the function of the bone marrow microenvironment, we transplanted wild type bone marrow cells into lethally irradiated Foxp3-DTR mice after Treg depletion. Results: We found 1) a significant defect on B cell progenitors including mature B cells (IgM+B220+, P<0.001), pre-B cells (IgM-B220+CD19+cKit-, P<0.001) and pro-B cells (IgM-B220+CD19+cKit+, P<0.05), 2) LT-HSC population (CD34-/lowFlit3-cKit+Sca1+Lin-) was significantly expanded (p<0.01) and entered into cell cycle, 3) the residual Foxp3-CD4+ or CD8+ T cells in the bone marrow had an activated immune phenotype and clustered at sinusoids when bone marrow cells from Treg depleted mice were analyzed. Expanded LT-HSC from Treg depleted mice had reduced long-term reconstitution capacity when we performed competitive repopulation experiments using purified LT-HSC from Foxp3-DTR mice with or without Treg depletion (100 cells/mice, CD45.2), total bone marrow cells (2x10e5/mice, B6-F1, CD45.1/CD45.2) and congenic recipient mice (lethally irradiated B6, CD45.1). B cell reconstitution was also severely abrogated following transplantation using Treg depleted mice as recipients (p<0.01). In those mice, we observed a significant reduction of IL-7 production (p<0.01). Interestingly, we found that a subpopulation of CD45-TER119-CD31- ICAM1+ perivascular stromal cells are a major source of IL-7 in the bone marrow. ICAM1+ perivascular stromal cells also secrete SCF and CXCL12, which is crucial for the maintenance of LT-HSC. In Treg depleted BM cells, a significant reduction in IL-7 secretion from ICAM1+ perivascular stromal cells was observed, suggesting that this population is the target of activated T cells after Treg depletion. Conclusions: These data demonstrate that Treg play a key role in B cell differentiation from HSCs by maintaining the immunological homeostasis in the bone marrow microenvironment. These data provide new insights into Treg biology and function in normal and stress hematopoiesis. Disclosures Negrin: Stanford University: Patents & Royalties.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3131-3131
Author(s):  
Michael Triebwasser ◽  
Danuta Jadwiga Jarocha ◽  
Laura Breda ◽  
Megan Fedorky ◽  
Stefano Rivella

Abstract In humans, interleukin 7 (IL-7) receptor (IL-7R) deficiency causes approximately 10% of cases of severe combined immunodeficiency (SCID). IL-7R deficient SCID is a T-B+NK+ SCID and is caused by autosomal recessive deficiency of the IL-7R alpha chain gene (IL7R). IL-7R is a heterodimeric receptor comprised of the alpha chain and the IL-2 receptor common gamma chain (IL2RG). In both mouse and human, IL-7R is a marker of the common lymphoid progenitor cell, and IL-7 signaling leads to STAT5 phosphorylation and proliferation of developing T and B cells. Mice lacking IL7R, Il7r -/-, lack both T and B cells (Peschon, JJ, et al. J Exp Med. 1994). T cells do not progress to TCR beta chain rearrangement and B cell development is halted at the pre-pro-B cell stage. Similar to the mouse, IL-7 signaling in humans is required for T cell receptor beta gene rearrangement and T cell maintenance, however humans lacking IL-7R can develop B cells. A prior attempt to rescue murine IL-7R deficiency utilized a retroviral vector (mouse stem cell virus, MSCV), the MSCV retroviral promoter, and the murine Il7r gene (Jiang, Q, et al. Gene Therapy. 2005). This strategy did restore T cells and had variable restoration of B cells. However, retroviral-based gene addition of Il7r led to a myeloproliferative condition with significant neutrophilia and splenomegaly. Transduced bone marrow cells formed myeloid progenitors in response to IL-7 in vitro. We evaluated a novel gene therapy for IL-7R deficient SCID that utilizes the human IL7R gene. To prevent lineage skewing, we sought to limit ectopic expression of IL7R in non-lymphoid cells by utilizing the endogenous enhancers and promoters of IL7R. These sequences were identified as sites of high sequence conservation across species and DNA accessibility/hypersensitivity (DHS) in human lymphocytes. We are testing these sequences alone or in combination with the constitutive phosphoglycerate kinase promoter (PGK) in VSV-G pseudotyped lentiviral vectors (LV): vPGK_DHS_hIL7R and vDHS_hIL7R. Here we present the first data evaluating the ability of the human IL-7R protein to functionally replace the murine IL-7R protein and the ability of IL7R gene addition to rescue the murine Il7r -/- immunodeficient phenotype in vivo. Transduction of Il7r -/- bone marrow cells with IL7R encoding LV rescued the formation of lymphocyte precursors from murine bone marrow cells in colony forming unit (CFU) assays (pre-B CFU with human IL-7), with the most robust response seen with vPGK_DHS_hIL7R. Mouse bone marrow from Il7r -/- animals transduced ex vivo engrafted in lethally irradiated (8 Gy) Il7r -/-oppositegender recipients and there were no significant aberrations in absolute neutrophil count, hemoglobin or platelet count. Absolute lymphocyte counts in mice receiving transduced Il7r -/-bone marrow cells was higher (mean 2555/μL) than in mice receiving untransduced bone marrow (mean 1410/μL). The proportion of leukocytes that were T cells was 4.2-fold and 9.8-fold higher at 1 and 2 months post-transplant, respectively. B cells were only seen in mice receiving vPGK_DHS_hIL7R: 7.4% of leukocytes versus 1.5% in controls. A reciprocal decrease in the fraction of Gr1+ cells (neutrophils and monocytes) was seen at two months post-transplant in transduced marrow recipients compared to untransduced controls: 36.5% versus 63% Gr1+, respectively. Lymphocyte subsets are being further analyzed, bone marrow and thymic lymphoid precursors assessed, and T and B cell function in response to immunizations are in progress. Further evaluation in human derived IL7R deficient human cells is warranted. For individuals with IL-7R deficient SCID, but no HLA matched hematopoietic stem cell (HSC) donor, there is a difficult choice between the risks of GVHD with a mismatched HSC donor and supportive care with the hope of identifying a matched HSC donor in the future. In immunodeficiencies however age and serious infection are both associated with increased mortality (Pai, SY, et al. NJEM. 2014). This novel approach to IL7R gene replacement has the potential to be a therapeutic and expedient option for those without a matched donor. Additionally, this would be an ideal disorder for HSC conditioning with less toxic, HSC-targeted strategies given gene corrected lymphocytes and progenitors will preferentially expand post-transplant. Disclosures Rivella: Disc Medicine: Consultancy, Membership on an entity's Board of Directors or advisory committees; Keros Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Consultancy; Ionis Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; MeiraGTx: Consultancy, Membership on an entity's Board of Directors or advisory committees; Forma Theraputics: Consultancy; Incyte: Consultancy.


1990 ◽  
Vol 10 (7) ◽  
pp. 3562-3568
Author(s):  
M Principato ◽  
J L Cleveland ◽  
U R Rapp ◽  
K L Holmes ◽  
J H Pierce ◽  
...  

Murine bone marrow cells infected with replication-defective retroviruses containing v-raf alone or v-myc alone yielded transformed pre-B cell lines, while a retroviral construct containing both v-raf and v-myc oncogenes produced clonally related populations of mature B cells and mature macrophages. The genealogy of these transformants demonstrates that mature myeloid cells were derived from cells with apparent B-lineage commitment and functional immunoglobulin rearrangements. This system should facilitate studies of developmental relationships in hematopoietic differentiation and analysis of lineage determination.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 479-483
Author(s):  
T Nagasawa ◽  
T Sakurai ◽  
H Kashiwagi ◽  
T Abe

We studied a patient with a rare complication of amegakaryocytic thrombocytopenia (AMT) associated with systemic lupus erythematosus (SLE). To investigate the underlying pathogenesis of AMT, the effects of peripheral blood T cells and serum on human megakaryocyte progenitor cells were studied using in vitro coculture techniques. Mononuclear bone marrow cells (2 X 10(5) from normal donors produced 33.6 +/- 8.8 (n = 10) colony-forming unit-megakaryocytes (CFU-M) in our plasma clot system. When 2 X 10(5) of the patient's T cells were added to the culture system, the number of CFU-M decreased to only 3.5 +/- 0.6/2 X 10(5) bone marrow cells. No evidence of inhibitory effects was found by the addition of the patient's serum and complement to the culture system. The T cells stored at -80 degrees C on admission were also capable of suppressing autologous CFU-M after recovery from AMT. These results indicate that in vitro suppression of CFU-M from allogenic and autologous bone marrow cells by this patient's T cells provides an explanation for the pathogenesis of AMT associated with SLE.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3674-3674
Author(s):  
Nobuyoshi Hanaoka ◽  
Tatsuya Kawaguchi ◽  
Kentaro Horikawa ◽  
Shoichi Nagakura ◽  
Sonoko Ishihara ◽  
...  

Abstract Immune mechanism is considered to exert in the pathogenesis of marrow failure in paroxysmal nocturnal hemoglobinuria (PNH), idiopathic aplastic anemia (AA) and myelodysplastic syndromes (MDS); however, the molecular events are unknown. We have currently reported the appearance of NKG2D ligands such as cytomegalovirus glycoprotein UL16 binding proteins (ULBPs) and MHC class I-related chains A and B (MICA/B) on granulocytes and CD34+ marrow cells of some patients with PNH and its related diseases (Hanaoka N, et al. Blood. 2006;107:1184–1191). ULBP and MICA/B are stress-inducible membrane proteins that appear in infection and transformation. The ligands share NKG2D receptor on lymphocytes such as NK, CD8+ T, and γδ T-cells and promote activation of the lymphocytes. Cells expressing the ligands are then deadly injured by NKG2D+ lymphocytes (Groh, PNAS 1996; Cosman, Immunity 2001). Indeed, cells expressing NKG2D ligands were killed in vitro by autologous NKG2D+ lymphocytes of our patients (Hanaoka N, et al. Blood. 2005;106:304a; Blood. 2006;108:295a). In further analysis, ligands were detected on granulocytes in 47 (53%) of 88 patients: 11 (58%) of 19 PNH, 28 (60%) of 47 AA, and 8 (36%) of 22 refractory anemia. Ligands were also detected on immature bone marrow cells in all 11 patients (3 PNH, 5 AA, and 3 refractory anemia) who permitted analysis of their marrow cells. In the patients, it is conceivable that blood cells were exposed to a certain stress to induce NKG2D ligands, leading to NKG2D-mediated marrow injury. We also observed a close association of the ligand expression with pancytopenia and favorable response to immunosuppressive therapy by prospective analysis of 5 patients (3 AA-PNH syndrome and 2 AA) for more than one year up to 5 years. Thus, we here propose that NKG2D-mediated immunity, which drives both NK and T-cells, is critically implicated in the pathogenesis of bone marrow failure of PNH and its related disorders.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 915-915
Author(s):  
Christine V. Ichim ◽  
Dzana Dervovic ◽  
Juan Carlo Zuniga-Pflucker ◽  
Richard A. Wells

Abstract Abstract 915 The orphan nuclear receptor NR2F6 is a mammalian homologue of the Drosophila seven-up gene that plays key roles in decisions of cell fate in neuroblast and retinal cells. We have previously described a novel role for NR2F6 in decisions of cell fate of mammalian haematopoietic cells of the myeloid cell lineage. We have shown that over-expression of NR2F6 in bone marrow cells impairs differentiation and extends the proliferative capacity of myeloid and early progenitor cells eventually leading to acute myeloid leukaemia (AML), while silencing of NR2F6 expression in AML cell lines causes terminal differentiation and apoptosis. A role of NR2F6 in lymphopoiesis has yet to be identified. Here we describe for the first time a role for NR2F6 in the specification of lymphoid cells. NR2F6 expression is heterogeneous throughout the haematopoietic hierarchy, with expression being highest in long-term repopulating HSCs and generally declining with the differentiation of progenitor cells. We report that over-expression of NR2F6 abrogates the developmental program necessary for T-cell lymphopoiesis. We assessed the effects of NR2F6 on lymphopoiesis in vivo by competitive bone marrow transplantation of NR2F6-IRES-GFP or GFP retrovirally transduced grafts (n=43). Competitive repopulation of lethally irradiated murine hosts with GFP transduced bone marrow cells resulted in successful engraftment and T-cell development, with GFP+ T-cells present in the thymus, and periphery at rates comparable to the percent marked cells in the original graft. However over-expression of NR2F6 placed developing T-cells at a dramatic competitive disadvantage. Six weeks post transplant the proportion of CD3+ cells derived from NR2F6 transduced bone marrow cells was greatly diminished relative to control (more than 10 fold), while at 12 weeks post-transplant we observed an abrogation of CD3+ cells derived from NR2F6 transduced T-cells (with the percentage of NR2F6 transduced CD3+ cells being comparable to staining with IgG control) in both the thymus and periphery. This stark competitive disadvantage was observed in all recipients of NR2F6 transduced grafts. We confirmed that this is not a phenomenon specific to the marker CD3 by analysing a portion of the animals for expression of CD4 and CD8, which again showed a lack of mature t-cells. In a second series of bone marrow transplants, cells transduced with NR2F6 or GFP were purified by fluorescence-activated cell sorting and grafts of 100% transduced cells were transferred by tail vein injection into lethally irradiated recipients. Animals transplanted with NR2F6 transduced bone marrow demonstrated a gross decrease in their thymic size and cellularity (∼10 fold decrease, n=17). Furthermore, the thymus of NR2F6 transduced animals contained a larger proportion of non-transduced, GFP negative residual haematopoietic cells than the vector control animals, corroborating the competitive disadvantage that NR2F6 transduced bone marrow cells face in the thymus. As observed in our previous experiments these animals demonstrated a gross reduction in the proportion of CD3+ cells in the thymus, spleen, lymph nodes and peripheral blood. To rule out the possibility that over-expression of NR2F6 is preventing the trafficking of progenitor cells to the thymus we differentiated NR2F6 or GFP transduced haematopoietic stem cells (lin-,c-kit+,sca-1+) into T-cells in vitro on OP9-DL1 cells. We observed a drastic reduction in the number of cells generated from NR2F6 transduced stem/progenitor cells (>50 fold at day 23), suggesting that expression of NR2F6 greatly impairs T-cell development. Mechanistically, others have shown that NR2F6 functions as a transcriptional repressor inhibiting the transactivating ability of genes such as Runx1. We conjecture that in lymphoid progenitors as well NR2F6 functions as a transcriptional repressor preventing the activation of pathways necessary for T-cell survival, proliferation and lymphopoiesis. Taken together, these data establish that the orphan nuclear receptor NR2F6 is a novel negative regulator of T-cell lymphopoiesis, and demonstrate that down-regulation of NR2F6 is important for the survival and proliferation of T-cell progenitors. Disclosures: No relevant conflicts of interest to declare.


1989 ◽  
Vol 9 (1) ◽  
pp. 67-73 ◽  
Author(s):  
W S Alexander ◽  
J M Adams ◽  
S Cory

Although transgenic mice bearing a c-myc gene controlled by the immunoglobulin heavy-chain enhancer (E mu) eventually develop B-lymphoid tumors, B-lineage cells from preneoplastic bone marrow express the transgene but do not grow autonomously or produce tumors in mice. To determine whether other oncogenes can cooperate with myc to transform B-lineage cells, we compared the in vitro growth and tumorigenicity of normal and E mu-myc bone marrow cells infected with retroviruses bearing the v-H-ras, v-raf, or v-abl oncogene. The v-H-ras and v-raf viruses both generated a rapid polyclonal expansion of E mu-myc pre-B bone marrow cells in liquid culture and 10- to 100-fold more pre-B lymphoid colonies than normal in soft agar. The infected transgenic cells were autonomous, cloned efficiently in agar, and grew as tumors in nude mice. While many pre-B cells from normal marrow could also be induced to proliferate by the v-raf virus, these cells required a stromal feeder layer, did not clone in agar, and were not malignant. Most normal cells stimulated to grow by v-H-ras also cloned poorly in agar, and only rare cells were tumorigenic. With the v-abl virus, no more cells were transformed from E mu-myc than normal marrow and the proportion of tumorigenic pre-B clones was not elevated. These results suggest that both v-H-ras and v-raf, but apparently not v-abl, collaborate with constitutive myc expression to promote autonomous proliferation and tumorigenicity of pre-B lymphoid cells.


Sign in / Sign up

Export Citation Format

Share Document