The Orphan Nuclear Receptor NR2F6 Is a Novel Negative Regulator of T-Cell Development.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 915-915
Author(s):  
Christine V. Ichim ◽  
Dzana Dervovic ◽  
Juan Carlo Zuniga-Pflucker ◽  
Richard A. Wells

Abstract Abstract 915 The orphan nuclear receptor NR2F6 is a mammalian homologue of the Drosophila seven-up gene that plays key roles in decisions of cell fate in neuroblast and retinal cells. We have previously described a novel role for NR2F6 in decisions of cell fate of mammalian haematopoietic cells of the myeloid cell lineage. We have shown that over-expression of NR2F6 in bone marrow cells impairs differentiation and extends the proliferative capacity of myeloid and early progenitor cells eventually leading to acute myeloid leukaemia (AML), while silencing of NR2F6 expression in AML cell lines causes terminal differentiation and apoptosis. A role of NR2F6 in lymphopoiesis has yet to be identified. Here we describe for the first time a role for NR2F6 in the specification of lymphoid cells. NR2F6 expression is heterogeneous throughout the haematopoietic hierarchy, with expression being highest in long-term repopulating HSCs and generally declining with the differentiation of progenitor cells. We report that over-expression of NR2F6 abrogates the developmental program necessary for T-cell lymphopoiesis. We assessed the effects of NR2F6 on lymphopoiesis in vivo by competitive bone marrow transplantation of NR2F6-IRES-GFP or GFP retrovirally transduced grafts (n=43). Competitive repopulation of lethally irradiated murine hosts with GFP transduced bone marrow cells resulted in successful engraftment and T-cell development, with GFP+ T-cells present in the thymus, and periphery at rates comparable to the percent marked cells in the original graft. However over-expression of NR2F6 placed developing T-cells at a dramatic competitive disadvantage. Six weeks post transplant the proportion of CD3+ cells derived from NR2F6 transduced bone marrow cells was greatly diminished relative to control (more than 10 fold), while at 12 weeks post-transplant we observed an abrogation of CD3+ cells derived from NR2F6 transduced T-cells (with the percentage of NR2F6 transduced CD3+ cells being comparable to staining with IgG control) in both the thymus and periphery. This stark competitive disadvantage was observed in all recipients of NR2F6 transduced grafts. We confirmed that this is not a phenomenon specific to the marker CD3 by analysing a portion of the animals for expression of CD4 and CD8, which again showed a lack of mature t-cells. In a second series of bone marrow transplants, cells transduced with NR2F6 or GFP were purified by fluorescence-activated cell sorting and grafts of 100% transduced cells were transferred by tail vein injection into lethally irradiated recipients. Animals transplanted with NR2F6 transduced bone marrow demonstrated a gross decrease in their thymic size and cellularity (∼10 fold decrease, n=17). Furthermore, the thymus of NR2F6 transduced animals contained a larger proportion of non-transduced, GFP negative residual haematopoietic cells than the vector control animals, corroborating the competitive disadvantage that NR2F6 transduced bone marrow cells face in the thymus. As observed in our previous experiments these animals demonstrated a gross reduction in the proportion of CD3+ cells in the thymus, spleen, lymph nodes and peripheral blood. To rule out the possibility that over-expression of NR2F6 is preventing the trafficking of progenitor cells to the thymus we differentiated NR2F6 or GFP transduced haematopoietic stem cells (lin-,c-kit+,sca-1+) into T-cells in vitro on OP9-DL1 cells. We observed a drastic reduction in the number of cells generated from NR2F6 transduced stem/progenitor cells (>50 fold at day 23), suggesting that expression of NR2F6 greatly impairs T-cell development. Mechanistically, others have shown that NR2F6 functions as a transcriptional repressor inhibiting the transactivating ability of genes such as Runx1. We conjecture that in lymphoid progenitors as well NR2F6 functions as a transcriptional repressor preventing the activation of pathways necessary for T-cell survival, proliferation and lymphopoiesis. Taken together, these data establish that the orphan nuclear receptor NR2F6 is a novel negative regulator of T-cell lymphopoiesis, and demonstrate that down-regulation of NR2F6 is important for the survival and proliferation of T-cell progenitors. Disclosures: No relevant conflicts of interest to declare.

1992 ◽  
Vol 175 (4) ◽  
pp. 1151-1154 ◽  
Author(s):  
J H Jansen ◽  
J C Kluin-Nelemans ◽  
J Van Damme ◽  
G J Wientjens ◽  
R Willemze ◽  
...  

Since monocytes and macrophages that arise during the culture of bone marrow progenitor cells are potential sources of interleukin 6 (IL-6), we investigated whether auto- or paracrine production of this factor is involved in colony formation by normal hematopoietic progenitor cells. We added a polyclonal anti-IL-6 antiserum and a monoclonal anti-IL-6 antibody to cultures of monocyte- and T cell-depleted bone marrow cells. Colony formation was stimulated with granulocyte/monocyte-colony-stimulating factor (GM-CSF), monocyte-CSF, or IL-3. Addition of anti-IL-6 antibody resulted in decreased numbers of monocytic colonies to 40-50% of control values, whereas the numbers of granulocytic colonies were not altered. The inhibitory effect was preserved in cultures of CD34(+)-enriched bone marrow cells. As a second approach, we added a monoclonal antibody directed against the IL-6 receptor to cultures of monocyte- and T cell-depleted bone marrow cells. This antibody almost completely inhibited the growth of monocytic colonies, again without decreasing the number of granulocytic colonies. Finally, the importance of IL-6 in monocytopoiesis was demonstrated in serum-deprived bone marrow cultures: addition of exogenous IL-6 to cultures stimulated with GM-CSF resulted in increased numbers of monocytic colonies. Our results indicate that the permissive presence of IL-6 is required for optimal monocytic colony formation by bone marrow progenitor cells.


1983 ◽  
Vol 157 (5) ◽  
pp. 1635-1645 ◽  
Author(s):  
E A Goidl ◽  
J W Choy ◽  
J J Gibbons ◽  
M E Weksler ◽  
G J Thorbecke ◽  
...  

We have previously shown that old mice produce more hapten-augmentable plaque-forming cells (PFC) than do young animals, suggesting a greater auto-antiidiotype antibody (auto anti-Id) component in their immune response. In the present studies this is confirmed serologically. The marked auto-anti-Id response of aged mice can be transferred to lethally irradiated young recipients with spleen but not bone marrow cells from old donors, suggesting that it is an intrinsic property of their peripheral B cell population and that the distribution of Id arising from the bone marrow of old and young mice is similar. In contrast with young mice the auto-anti-Id response of old animals is relatively T cell-independent and old donors do not show an increase in their ability to transfer an auto-anti-Id response after priming with TNP-F. These observations suggest that old mice behave as if already primed for auto-anti-Id production. Irradiated mice reconstituted with bone marrow cells from either young or old donors together with splenic T cells from old donors generate a relatively large auto-anti-Id response, whereas mice reconstituted with bone marrow from either young or old donors together with splenic T cells from young donors produce few hapten-augmentable PFC. It is suggested that differences in Id expression and auto-anti-Id production are the consequences of the interaction of Id (and anti-Id) arising from the marrow with anti-Id (and Id) present in the peripheral T cell population which serves as a repository of information about shifts in Id distribution, resulting from lifelong interactions with environmental and self-antigens.


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 841-851 ◽  
Author(s):  
Elaine M. Sloand ◽  
Lori Mainwaring ◽  
Monika Fuhrer ◽  
Shakti Ramkissoon ◽  
Antonio M. Risitano ◽  
...  

AbstractClinical observations and experimental evidence link bone marrow failure in myelodysplastic syndrome (MDS) with a T cell–dominated autoimmune process. Immunosuppressive therapy is effective in improving cytopenias in selected patients. Trisomy 8 is a frequent cytogenetic abnormality in bone marrow cells in patients with MDS, and its presence has been associated anecdotally with good response to immunotherapy. We studied 34 patients with trisomy 8 in bone marrow cells, some of whom were undergoing treatment with antithymocyte globulin (ATG). All had significant CD8+ T-cell expansions of one or more T-cell receptor (TCR) Vβ subfamilies, as measured by flow cytometry; expanded subfamilies showed CDR3 skewing by spectratyping. Sorted T cells of the expanded Vβ subfamilies, but not of the remaining subfamilies, inhibited trisomy 8 cell growth in short-term hematopoietic culture. The negative effects of Vβ-expanded T cells were inhibited by major histocompatibility complex (MHC) class 1 monoclonal antibody (mAb) and Fas antagonist and required direct cell-to-cell contact. Sixty-seven percent of patients who had de novo MDS with trisomy 8 as the sole karyotypic abnormality responded to ATG with durable reversal of cytopenias and restoration of transfusion independence, with stable increase in the proportion of trisomy 8 bone marrow cells and normalization of the T-cell repertoire. An increased number of T cells with apparent specificity for trisomy 8 cells is consistent with an autoimmune pathophysiology in trisomy 8 MDS.


2011 ◽  
Vol 79 (5) ◽  
pp. 2031-2042 ◽  
Author(s):  
Xin Shi ◽  
Ping Zhang ◽  
Gregory D. Sempowski ◽  
Judd E. Shellito

ABSTRACTCD4+T cells play a key role in host defense againstPneumocystisinfection. To define the role of naïve CD4+T cell production through the thymopoietic response in host defense againstPneumocystisinfection,Pneumocystis murinainfection in the lung was induced in adult male C57BL/6 mice with and without prior thymectomy.Pneumocystisinfection caused a significant increase in the number of CCR9+multipotent progenitor (MPP) cells in the bone marrow and peripheral circulation, an increase in populations of earliest thymic progenitors (ETPs) and double negative (DN) thymocytes in the thymus, and recruitment of naïve and total CD4+T cells into the alveolar space. The level of murine signal joint T cell receptor excision circles (msjTRECs) in spleen CD4+cells was increased at 5 weeks post-Pneumocystisinfection. In thymectomized mice, the numbers of naïve, central memory, and total CD4+T cells in all tissues examined were markedly reduced followingPneumocystisinfection. This deficiency of naïve and central memory CD4+T cells was associated with delayed pulmonary clearance ofPneumocystis. Extracts ofPneumocystisresulted in an increase in the number of CCR9+MPPs in the cultured bone marrow cells. Stimulation of cultured bone marrow cells with ligands to Toll-like receptor 2 ([TLR-2] zymosan) and TLR-9 (ODN M362) each caused a similar increase in CCR9+MPP cells via activation of the Jun N-terminal protein kinase (JNK) pathway. These results demonstrate that enhanced production of naïve CD4+T lymphocytes through the thymopoietic response and enhanced delivery of lymphopoietic precursors from the bone marrow play an important role in host defense againstPneumocystisinfection.


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3108-3116 ◽  
Author(s):  
Ted S. Strom ◽  
Stephen J. Turner ◽  
Samita Andreansky ◽  
Haiyan Liu ◽  
Peter C. Doherty ◽  
...  

AbstractThe Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by immune dysfunction, thrombocytopenia, and eczema. We used a murine model created by knockout of the WAS protein gene (WASP) to evaluate the potential of gene therapy for WAS. Lethally irradiated, male WASP— animals that received transplants of mixtures of wild type (WT) and WASP— bone marrow cells demonstrated enrichment of WT cells in the lymphoid and myeloid lineages with a progressive increase in the proportion of WT T-lymphoid and B-lymphoid cells. WASP— mice had a defective secondary T-cell response to influenza virus which was normalized in animals that received transplants of 35% or more WT cells. The WASP gene was inserted into WASP— bone marrow cells with a bicistronic oncoretroviral vector also encoding green fluorescent protein (GFP), followed by transplantation into irradiated male WASP— recipients. There was a selective advantage for gene-corrected cells in multiple lineages. Animals with higher proportions of GFP+ T cells showed normalization of their lymphocyte counts. Gene-corrected, blood T cells exhibited full and partial correction, respectively, of their defective proliferative and cytokine secretory responses to in vitro T-cell–receptor stimulation. The defective secondary T-cell response to influenza virus was also improved in gene-corrected animals.


Blood ◽  
2009 ◽  
Vol 113 (15) ◽  
pp. 3475-3484 ◽  
Author(s):  
Josef Kurtz ◽  
Forum Raval ◽  
Casey Vallot ◽  
Jayden Der ◽  
Megan Sykes

Abstract Although the inhibitory receptor CTLA-4 (CD152) has been implicated in peripheral CD4 T-cell tolerance, its mechanism of action remains poorly defined. We analyzed mechanisms of CD4 cell tolerance in a model of tolerance induction involving establishment of mixed hematopoietic chimerism in recipients of fully MHC-mismatched allogeneic bone marrow cells with anti-CD154 mAb. Animals lacking CD80 and CD86 failed to achieve chimerism. We detected no T cell–intrinsic requirement for CD28 for chimerism induction. However, a CD4 T cell–intrinsic signal through CTLA-4 was shown to be essential within the first 48 hours of exposure to alloantigen for the establishment of tolerance and mixed chimerism. This signal must be provided by a recipient CD80/86+ non–T-cell population. Donor CD80/86 expression was insufficient to achieve tolerance. Together, our findings demonstrate a surprising role for interactions of CTLA-4 expressed by alloreactive peripheral CD4 T cells with CD80/86 on recipient antigen-presenting cells (APCs) in the induction of early tolerance, suggesting a 3-cell tolerance model involving directly alloreactive CD4 cells, donor antigen-expressing bone marrow cells, and recipient antigen-presenting cells. This tolerance is independent of regulatory T cells and culminates in the deletion of directly alloreactive CD4 T cells.


1991 ◽  
Vol 173 (2) ◽  
pp. 471-481 ◽  
Author(s):  
D Guy-Grand ◽  
N Cerf-Bensussan ◽  
B Malissen ◽  
M Malassis-Seris ◽  
C Briottet ◽  
...  

Mouse gut intraepithelial lymphocytes (IEL) consist mainly (90%) of two populations of CD8+ T cells. One bears heterodimeric alpha/beta CD8 chains (Lyt-2+, Lyt-3+), a T cell receptor (TCR) made of alpha/beta chains, and is Thy-1+; it represents the progeny of T blasts elicited in Peyer's patches by antigenic stimulation. The other bears homodimeric alpha/alpha CD8+ chains, contains no beta chain mRNA, and is mostly Thy-1- and TCR-gamma/delta + or -alpha/beta +; it is thymo-independent and does not require antigenic stimulation, as shown by its presence: (a) in nude and scid mice; (b) in irradiated and thymectomized mice repopulated by T-depleted bone marrow cells bearing an identifiable marker; (c) in thymectomized mice treated by injections of monoclonal anti-CD8 antibody, which lead to total depletion of peripheral CD8+ T lymphocytes; and (d) in germ-free mice and in suckling mice. In young nude mice, alpha/alpha CD8 chains, CD3-TCR complexes, and TCR mRNAs (first gamma/delta) are found on IEL, while they are not detectable on or in peripheral or circulating lymphocytes or bone marrow cells. IEL, in contrast to mature T cells, contain mRNA for the RAG protein, which is required for the rearrangement of TCR and Ig genes. We propose that the gut epithelium (an endoderm derivative, as the thymic epithelium) has an inductive property, attracting progenitors of bone marrow origin, and triggering their TCR rearrangement and alpha/alpha CD8 chains expression, thus giving rise to a T cell population that appears to belong to the same lineage as gamma/delta thymocytes and to recognize an antigenic repertoire different from that of alpha/beta CD8+ IEL.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2215-2215
Author(s):  
Gerlinde Layh-Schmitt ◽  
Scott Crable ◽  
Kathleen Crable ◽  
Elizabeth Kraft ◽  
Jeff Bailey ◽  
...  

Abstract T cell acute lymphoblastic leukemia (T-ALL) is frequently associated with overexpression of the oncogenes LMO2 and SCL(TAL1) which are normally down regulated following the double negative stage of T cell development. Our goal is to decipher the molecular and cellular mechanisms leading to the onset of LMO2 associated T-ALL. We were able to isolate a complex containing the transcription factors LMO2, SCL(TAL1) and E47 from primary human T-ALL cells with proven aberrant expression of LMO2 and SCL(TAL1) by applying immunoprecipitation and Western blotting techniques. This protein complex regulates the transcription of a truncated form of RALDH2 (retinaldehyde dehydrogenase) in T-ALL cells as shown by gene transcription profiling in conjunction with RT-PCR and siRNA approaches. To monitor the effect of LMO2 expression on T cell development and leukemogenesis, lethally irradiated mice (C57BL/6) were transplanted with bone marrow cells that had been transduced with a retrovirus carrying LMO2 as the transgene. One year later, 88% of the cells in the thymus expressed LMO2 and a shift towards CD3−/CD44+/CD25+ cells was observed (an 88% increase compared to normal thymocytes), suggesting a differentiation block caused by LMO2 leading to an accumulation of immature T cells. To test and identify cooperating genes in T-ALL development, bone marrow cells of LMO2 double transgenic mice in which tet-inducible LMO2 is controlled by a thymic specific promoter, were retrovirally transduced with SCL(TAL1). So far, none of the control animals, transplanted with bone marrow cells transduced with a vector only containing EGFP, developed T-ALL. However, six out of the seven test animals developed T-ALL exhibiting enlargement of the spleen, liver and thymus between seven and nine months after transplantation. Organs and blood of the diseased animals were infiltrated with T-ALL cells of the immature phenotype CD8+/CD4+ in five cases and of the CD3−/CD44+/CD25+ phenotype in one case. This indicates that the differentiation block caused by a lack of down-regulation of LMO2 and SCL(TAL1) in maturing T cells leads to a block in T cell differentiation and precedes T-ALL. These models will be used to examine the involvement of other cooperating genes in T-ALL development as well as downstream target genes of LMO2/SCL(TAL1), such as RALDH2, in the onset of T-ALL. We conclude that aberrant expression of LMO2 in T cells leads to a block in T cell maturation and, in conjunction with up-regulation of secondary genes like SCL(TAL1), triggers deregulation of genes in immature T cells leading to impaired T cell development and the onset of T-ALL. The described model will help to identify cooperating genes in LMO2 associated T-ALL as well as the chain of events leading to malignancy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A985-A985
Author(s):  
Nikita Sharma ◽  
Priya Govindaraju ◽  
Shermineh Bradford ◽  
Yarong Wang ◽  
Brianna Flynn ◽  
...  

BackgroundCancer associated fibroblasts (CAFs) promote tumorigenesis by secreting immunosuppressive cytokines, stimulating angiogenesis, and supporting the growth of tumor cells. Through their interactions with immune cells, CAFs are known to directly impact the functionality of T cells and macrophages. However, CAF interaction with dendritic cells (DCs) and DC progenitor cells and its impact on DC function is relatively understudied and was the main focus of this study.MethodsTwo types of coculture systems were used in this study. For the human system, fibroblasts from lung squamous cell carcinoma (LUSC) were cocultured with MUTZ3 cells (hematopoietic progenitor cells) in the presence of DC differentiation stimuli, sometimes followed by DC maturation stimuli. For the mouse coculture system, activated (YPSC-c) and inactivated (PSC-b) pancreatic stellate cells (PSCs) were isolated from the pancreas of C57BL/6 mice by the density gradient method and co-cultured in the presence of bone marrow cells in the presence of DC differentiation and maturation stimuli. For human tumor antigen processing and cross presentation assay MART1 peptide (10mer and 20mer) was used.ResultsCo-culture of human and murine hematopoietic progenitor cells with fibroblasts (human LUSC CAFs and murine PSC results in decrease in differentiation and maturation of DCs. DCs differentiated and matured in the presence of fibroblasts have impaired ability to process and present tumor antigen to T cells. In the presence of PSC fibroblasts DC differentiation from murine bone marrow cells is skewed more towards MDSC and macrophages. In contrast to inactivated PSC-b, activated PSC-c influence DC differentiation in a contact dependent manner. Furthermore, PSC-b and PSC-c show transcriptionally distinct signatures which translate to unique secretory profiles as measured by Luminex. Analysis of the conditioned media from the coculture demonstrated that PSC-c secrete (among others) CXCL1, IL6, and CCL5 chemo/cytokines. These and other factors may play an important role in mediating fibroblast induced suppression of DC differentiation from monocytes.ConclusionsOur study demonstrates that cancer associated fibroblasts, or their precursors directly impact DC differentiation and antigen presentation via cytokines that could be targeted therapeutically to improve DC expansion and activity in the tumor microenvironment.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 191-191
Author(s):  
Hong Xu ◽  
Paula M. Chilton ◽  
Yiming Huang ◽  
Carrie L. Schanie ◽  
Michael K. Tanner ◽  
...  

Abstract Allosensitization resulting from transfusion therapy is a major challenge for the use of bone marrow transplantation to treat sickle cell disease. Prior exposure to foreign major histocompatibility complex (MHC) antigens through transfusion or transplantation is associated with an increased rate of solid organ graft rejection. Using a mouse model for sensitization, we recently found that humoral immunity plays a dominant role in sensitization to MHC alloantigens and concomitant graft rejection. The relative contribution of cellular versus humoral adaptive immune responses has not been fully characterized. In this study, we explored the role of host T cells in rejection of allografts by sensitized recipients using μ MT mice which are defective in producing mature B cells and antibody. Therefore, the barrier from preformed antibodies in sensitized normal mice would not exist in μ MT mice. μ MT (H-2b) mice were sensitized with BALB/c (H-2d) skin grafts. Although no anti-MHC alloantibody was detected in the μ MT mice after rejection, the skin grafts were rejected with a kinetic similar to normal controls (MST = 14.1 ± 1.2 days versus 13.6 ± 1.5 days). The prompt rejection of skin allografts by B cell deficient mice suggests that T cell activation and function are normal in vivo and that T cells alone are sufficient to reject allogeneic skin grafts. BMT was subsequently performed in presensitized μ MT mice 5 weeks after sensitization as well as in naïve μ MT mice. All naïve μ MT mice (n = 6) engrafted with 700 cGy TBI and 30 x 106 bone marrow cells, but none of the presensitized μ MT mice engrafted. Since humoral immunity is absent in sensitized μ MT mice, the increased barrier in these mice therefore must be mediated by the primed T cells. To further define the relative contribution of T cell subpopulations to alloresistance, we targeted these populations in vivo as preconditioning using monoclonal antibodies (mAb). Sensitized μ MT mice were treated with anti-α β-TCR, anti-CD8, anti-CD4 or anti-CD154 mAbs alone or in combination and 850 cGy of total body irradiation, then transplanted with untreated BALB/c donor bone marrow cells (Figure). Engraftment did not occur in the sensitized μ MT mice without mAb treatment, while nearly all animals engrafted with preconditioning with anti-α β-TCR alone, anti-CD8 plus anti-CD154, or anti-CD8 plus anti-CD4 (100%, 87.5%, and 100% respectively) and transplantation with 30 x 106 donor BM cells. Moreover, anti-α β-TCR preconditioning promoted engraftment in all sensitized μ MT mice with transplantation of as low as 15 x 106 BM cells. These data demonstrate that T cell mediated cellular immunity contributes to rejection in sensitized recipients, and that successful therapies to achieve allogeneic engraftment using nonmyeloablative conditioning in sensitized recipients will need to address both arms of the adaptive antigen-specific immune system: cellular and humoral. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document