Modulation of Energy Metabolism by Vasoactive Intestinal Peptide, Adenosine, and K+ in the Cerebral Cortex: Focus on the Cellular Level

1990 ◽  
pp. 474-487
Author(s):  
P. J. Magistretti ◽  
J.-L. Martin ◽  
P. R. Hof
2022 ◽  
Vol 15 ◽  
Author(s):  
Gloria S. Lee ◽  
Devon L. Graham ◽  
Brenda L. Noble ◽  
Taylor S. Trammell ◽  
Deirdre M. McCarthy ◽  
...  

Developmental dysregulation of dopamine D2 receptors (D2Rs) alters neuronal migration, differentiation, and behavior and contributes to the psychopathology of neurological and psychiatric disorders. The current study is aimed at identifying how cell-specific loss of D2Rs in the cerebral cortex may impact neurobehavioral and cellular development, in order to better understand the roles of this receptor in cortical circuit formation and brain disorders. We deleted D2R from developing cortical GABAergic interneurons (Nkx2.1-Cre) or from developing telencephalic glutamatergic neurons (Emx1-Cre). Conditional knockouts (cKO) from both lines, Drd2fl/fl, Nkx2.1-Cre+ (referred to as GABA-D2R-cKO mice) or Drd2fl/fl, Emx1-Cre+ (referred to as Glu-D2R-cKO mice), exhibited no differences in simple tests of anxiety-related or depression-related behaviors, or spatial or nonspatial working memory. Both GABA-D2R-cKO and Glu-D2R-cKO mice also had normal basal locomotor activity, but GABA-D2R-cKO mice expressed blunted locomotor responses to the psychotomimetic drug MK-801. GABA-D2R-cKO mice exhibited improved motor coordination on a rotarod whereas Glu-D2R-cKO mice were normal. GABA-D2R-cKO mice also exhibited spatial learning deficits without changes in reversal learning on a Barnes maze. At the cellular level, we observed an increase in PV+ cells in the frontal cortex of GABA-D2R-cKO mice and no noticeable changes in Glu-D2R-cKO mice. These data point toward unique and distinct roles for D2Rs within excitatory and inhibitory neurons in the regulation of behavior and interneuron development, and suggest that location-biased D2R pharmacology may be clinically advantageous to achieve higher efficacy and help avoid unwanted effects.


2010 ◽  
Vol 25 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Andréa G. K. Ferreira ◽  
Daniela D. Lima ◽  
Débora Delwing ◽  
Vanize Mackedanz ◽  
Bárbara Tagliari ◽  
...  

2021 ◽  
Author(s):  
Fanny Lepiemme ◽  
Gabriel Mazzucchelli ◽  
Carla Silva ◽  
Laurent Nguyen

The cerebral cortex is built by neural cells that migrate away from their birthplace. In the forebrain, ventrally-derived oligodendrocyte precursor cells (vOPCs) travel tangentially together with cortical interneurons (cINs) to reach the cortex. After birth, vOPCs form transient synapses with cINs before engaging later into myelination. Here we tested whether these populations interact during embryogenesis while migrating. By coupling histological analysis of mouse genetic models with live imaging, we showed that, while responding to the chemokine Cxcl12, vOPCs and cINs occupy mutually-exclusive forebrain territories. Moreover, vOPCs depletion selectively disrupts the migration and distribution of cINs. At the cellular level, we found that by promoting unidirectional contact-repulsion (UCoRe) of cINs, vOPCs steer their migration away from blood vessels and contribute to their allocation to proper migratory streams. UCoRe is thus an efficient strategy to spatially control the competition for a shared chemoattractant, thereby allowing cINs to reach proper cortical territories.


Sign in / Sign up

Export Citation Format

Share Document