Accounting for Selection and Mating Biases in Genetic Evaluations

Author(s):  
C. R. Henderson
Keyword(s):  
2004 ◽  
Vol 87 (8) ◽  
pp. 2614-2620 ◽  
Author(s):  
R.L. Powell ◽  
A.H. Sanders ◽  
H.D. Norman

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 9-9
Author(s):  
Johnna L Baller ◽  
Stephen D Kachman ◽  
Larry A Kuehn ◽  
Matthew L Spangler

Abstract Economically relevant traits (ERT) are routinely collected within commercial segments of the beef industry but are rarely included in genetic evaluations because of unknown pedigrees. Individual relationships could be resurrected with genomics, which would be costly; pooling DNA and phenotypic data provides a cost-effective solution. A simulated beef cattle population consisting of 15 generations was genotyped with approximately 50k markers (841 quantitative trait loci were located across the genome) and phenotyped for a moderately heritable trait. Individuals from generation 15 were included in pools (observed genotype and phenotype were mean values of a group). Estimated breeding values (EBV) were generated from a single-step GBLUP model. The effects of pooling strategy (random and minimizing or uniformly maximizing phenotypic variation), pool size (1, 2, 10, 20, 50, 100, or no data from generation 15), and generational gaps of genotyping on EBV accuracy (correlation of EBV with true breeding values) were quantified. Greatest EBV accuracies of sires and dams were observed when no gap between genotyped parents and pooled offspring occurred. The EBV accuracies resulting from pools were greater than no data from generation 15 regardless of sire or dam genotyping. Minimizing phenotypic variation increased EBV accuracy by 8% and 9% over random pooling and uniformly maximizing phenotypic variation, respectively. Pool size of 2 was the only scenario that did not significantly decrease EBV accuracy compared to individual data when pools were formed randomly or by uniformly maximizing phenotypic variation (P > 0.05). Pool sizes of 2, 10, 20, or 50 did not generally lead to EBV accuracies that were statistically different than individual data when pools were constructed to minimize phenotypic variation (P > 0.05). Pooled genotyping to garner commercial-level phenotypes for genetic evaluations seems plausible, although differences exist depending on pool size and pool formation strategy. The USDA is an equal opportunity employer.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 708
Author(s):  
Moran Gershoni ◽  
Joel Ira Weller ◽  
Ephraim Ezra

Yearling weight gain in male and female Israeli Holstein calves, defined as 365 × ((weight − 35)/age at weight) + 35, was analyzed from 814,729 records on 368,255 animals from 740 herds recorded between 1994 and 2021. The variance components were calculated based on valid records from 2008 through 2017 for each sex separately and both sexes jointly by a single-trait individual animal model analysis, which accounted for repeat records on animals. The analysis model also included the square root, linear, and quadratic effects of age at weight. Heritability and repeatability were 0.35 and 0.71 in the analysis of both sexes and similar in the single sex analyses. The regression of yearling weight gain on birth date in the complete data set was −0.96 kg/year. The complete data set was also analyzed by the same model as the variance component analysis, including both sexes and accounting for differing variance components for each sex. The genetic trend for yearling weight gain, including both sexes, was 1.02 kg/year. Genetic evaluations for yearling weight gain was positively correlated with genetic evaluations for milk, fat, protein production, and cow survival but negatively correlated with female fertility. Yearling weight gain was also correlated with the direct effect on dystocia, and increased yearling weight gain resulted in greater frequency of dystocia. Of the 1749 Israeli Holstein bulls genotyped with reliabilities >50%, 1445 had genetic evaluations. As genotyping of these bulls was performed using several single nucleotide polymorhphism (SNP) chip platforms, we included only those markers that were genotyped in >90% of the tested cohort. A total of 40,498 SNPs were retained. More than 400 markers had significant effects after permutation and correction for multiple testing (pnominal < 1 × 10−8). Considering all SNPs simultaneously, 0.69 of variance among the sires’ transmitting ability was explained. There were 24 markers with coefficients of determination for yearling weight gain >0.04. One marker, BTA-75458-no-rs on chromosome 5, explained ≈6% of the variance among the estimated breeding values for yearling weight gain. ARS-BFGL-NGS-39379 had the fifth largest coefficient of determination in the current study and was also found to have a significant effect on weight at an age of 13–14 months in a previous study on Holsteins. Significant genomic effects on yearling weight gain were mainly associated with milk production quantitative trait loci, specifically with kappa casein metabolism.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 75-76
Author(s):  
Camren l Maierle ◽  
Andrew R Weaver ◽  
Eugene Felton ◽  
Scott P Greiner ◽  
Scott A Bowdridge

Abstract Residual feed intake (RFI) is quickly becoming the preferred measurement of efficiency in many species due to its inherent independence of most other important production traits. Making meaningful improvement in feed efficiency of sheep will require a consistent methodology to accurately identify efficient individuals. Due to difficulty in measuring this trait efforts must be made to incorporate efficiency data in large-scale genetic evaluations. The aim of this study was to evaluate lambs in a feedlot with large-scale genetic evaluations for feed efficiency calculated by residual feed intake (RFI) utilizing a Growsafe™ system. RFI was calculated by subtracting expected intake from actual intake. Expected intake was determined by regressing metabolic body size of mid-test weight. Regression determined ADG on actual intake for individuals in the population. Texel (n = 58) and Katahdin (n = 118) lambs were placed in a feedlot and fed in separate feeding trials, a complete pellet ad libitum as the sole source of nutrition. In this environment Texel and Katahdin lambs had expected ADG values (0.27 kg/day, 0.32 kg/day respectively) and actual intake data (2154.17 g/day, 1909.33 g/day respectively. After a period of adaptation, Texel average intake was determined over a period of 27 consecutive days and used to calculate individual RFI within the test population. Observable ranges of RFI (-0.62 – +0.62) were seen in the Texel lambs. At the start of the Katahdin trial lambs were separated by sex and FEC treatment. After a period of adaptation, Katahdin average intake was determined over a period of 42 consecutive days and used to calculate individual RFI within the test population. Observable ranges of RFI (-0.53 – +0.50) were seen in the Katahdin lambs as well. In both feeding trials RFI appeared to be normally distributed. Use of this technology may be useful in identifying superior individuals for feed efficiency.


1990 ◽  
Vol 28 (5) ◽  
pp. 614-621 ◽  
Author(s):  
Scott T. Grafton ◽  
John C. Mazziotta ◽  
Jorg J. Pahl ◽  
Peter St. George-Hyslop ◽  
Jonathan L. Haines ◽  
...  

2008 ◽  
Vol 86 (5) ◽  
pp. 1047-1056 ◽  
Author(s):  
J. M. Hickey ◽  
M. G. Keane ◽  
D. A. Kenny ◽  
A. R. Cromie ◽  
H. A. Mulder ◽  
...  

1995 ◽  
Vol 78 (8) ◽  
pp. 1843-1854 ◽  
Author(s):  
M.M. Schutz ◽  
P.M. VanRaden ◽  
G.R. Wiggans ◽  
H.D. Norman

Sign in / Sign up

Export Citation Format

Share Document