Compressional and Shear-Wave Velocity Models of the Schwarzwald Derived from Seismic Refraction Data

Author(s):  
Dirk Gajewski
2018 ◽  
Vol 4 (12) ◽  
pp. 2937
Author(s):  
Amin Ghanbari ◽  
Younes Daghigh ◽  
Forough Hassanvand

The average shear wave velocity of the uppermost 30 m of earth (Vs30) is widely used in seismic geotechnical engineering and soil-structure interaction studies. In this regard, any given subsurface profile is assigned to a specific site class according to its average shear wave velocity. However, in a real-world scenario, entirely different velocity models could be considered in the same class type due to their identical average velocities. The objective of the present study is to underline some of the risks associated with solely using Vs30 as a classification tool. To do so, three imaginary soil profiles that are quite different in nature, but all with the same average Vs were considered and were subjected to the same earthquake excitation. Seismic records acquired at the ground surface demonstrated that the three sites have different ground motion amplifications. Then, the different ground responses were used to excite a five-story structure. Results confirmed that even sites from the same class can indeed exhibit different responses under identical seismic excitations. Our results demonstrated that caution should be practiced when large-contrast velocity models are involved as such profiles are prone to pronounced ground motion amplification. This study, which serves as link between soil dynamics and structural dynamics, warns practitioners about the risks associated with oversimplifying the subsurface profile. Such oversimplifications can potentially undermine the safety of existing or future structures.


2021 ◽  
Vol 24 (4) ◽  
pp. 473-484
Author(s):  
Cengiz Kurtuluş ◽  
Ibrahim Sertcelik ◽  
Fadime Sertçelik ◽  
Hamdullah Livaoğlu ◽  
Cüneyt Şaş

In this study, shallow seismic surveys, including seismic refraction, Multichannel Analysis of Surface Waves (MASW), Refraction Microtremor (ReMi), and Microtremor measurements were conducted to estimate site characterization at 26 strong-motion stations of AFAD (Disaster and Emergency Management Presidency) in the province of Hatay, situated in one of the most seismically active regions in southern Turkey. The Horizontal to vertical spectral ratio (HVSR) technique was applied, using smoothed Fourier spectra derived from a long duration series to determine dominant frequency values at different amplification levels. Shear wave velocity up to 30 m of the ground was detected with MASW analysis. In the ReMi analysis, up to 80 m was reached with a corresponding average of 650 m/s shear wave velocity. The shear wave velocities estimated by the MASW method up to 30 m were compared with those found by the ReMi method, and they were observed to be very compatible. The province of Hatay was classified according to Vs30 based NEHRP Provisions, Eurocode-8, the Turkish Building Earthquake Regulation (TBDY-2018), and Rodriguez-Marek et al. (2001). The shear-wave velocity (Vs30), Horizontal to Vertical ratio’s (H/V) peak amplitude, dominant period, and site class of each site were determined. The H/V peak amplitudes range between 1.9 and 7.6, while the predominant periods vary from 0.23 sec to 2.94sec in the study area. These results are investigated to explain the consistency of site classification schemes.


2020 ◽  
Author(s):  
Ilaria Barone ◽  
Emanuel Kästle ◽  
Claudio Strobbia ◽  
Giorgio Cassiani

<p>Surface Wave Tomography (SWT) is a well-established technique in global seismology: signals from strong earthquakes or seismic ambient noise are used to retrieve 3D shear-wave velocity models, both at regional and global scale. This study aims at applying the same methodology to controlled source data, with specific focus on 3D acquisition geometries for seismic exploration. For a specific frequency, travel times between all source-receiver couples are derived from phase differences. However, higher modes and heterogeneous spatial sampling make phase extraction challenging. The processing workflow includes different steps as (1) filtering in f-k domain to isolate the fundamental mode from higher order modes, (2) phase unwrapping in two spatial dimensions, (3) zero-offset phase estimation and (4) travel times computation. Surface wave tomography is then applied to retrieve a 2D phase velocity map. This procedure is repeated for different frequencies. Finally, individual dispersion curves obtained by the superposition of phase velocity maps at different frequencies are depth inverted to retrieve a 3D shear wave velocity model.</p>


2018 ◽  
Vol 34 (3) ◽  
pp. 1065-1089 ◽  
Author(s):  
Michael R. Deschenes ◽  
Clinton M. Wood ◽  
Liam M. Wotherspoon ◽  
Brendon A. Bradley ◽  
Ethan Thomson

Deep (typically > 1,000 m) shear wave velocity ( V S) profiles were developed across the Canterbury region of New Zealand at nine strong-motion stations using a combination of active and passive surface wave methods. A multimode, multimethod joint inversion process, which included Rayleigh and Love wave dispersion and horizontal-to-vertical spectral ratio data, was used to develop the V S profiles at each site. A priori geologic information was used in defining preliminary constraints on the complex geologic layering of the deep basin underlying the region, including velocity reversals in locations where interbedded terrestrial gravels and marine sediments are present. Shear wave profiles developed as part of this study had characteristics comparable to the profiles from 14 Christchurch sites detailed in a separate study. The profiles developed in the two studies were combined to form region-specific V S profiles for typical deposits, which can be used to improve the accuracy of current three-dimensional (3-D) crustal velocity models of the region.


Author(s):  
Jiayan Tan ◽  
Charles A. Langston ◽  
Sidao Ni

ABSTRACT Ambient noise cross-correlations, used to obtain fundamental-mode Rayleigh-wave group velocity estimates, and teleseismic P-wave receiver functions are jointly modeled to obtain a 3D shear-wave velocity model for the crust and upper mantle of Oklahoma. Broadband data from 82 stations of EarthScope Transportable Array, the U.S. National Seismic Network, and the Oklahoma Geological Survey are used. The period range for surface-wave ambient noise Green’s functions is from 4.5 to 30.5 s constraining shear-wave velocity to a depth of 50 km. We also compute high-frequency receiver functions at these stations from 214 teleseismic earthquakes to constrain individual 1D velocity models inferred from the surface-wave tomography. Receiver functions reveal Ps conversions from the Moho, intracrustal interfaces, and shallow sedimentary basins. Shallow low-velocity zones in the model correlate with the large sedimentary basins of Oklahoma. The velocity model significantly improves the agreement of synthetic and observed seismograms from the 6 November 2011 Mw 5.7 Prague, Oklahoma earthquake suggesting that it can be used to improve earthquake location and moment tensor inversion of local and regional earthquakes.


Sign in / Sign up

Export Citation Format

Share Document