scholarly journals Risks of Solely Relying on VS30 in Ground Motion Response Studies

2018 ◽  
Vol 4 (12) ◽  
pp. 2937
Author(s):  
Amin Ghanbari ◽  
Younes Daghigh ◽  
Forough Hassanvand

The average shear wave velocity of the uppermost 30 m of earth (Vs30) is widely used in seismic geotechnical engineering and soil-structure interaction studies. In this regard, any given subsurface profile is assigned to a specific site class according to its average shear wave velocity. However, in a real-world scenario, entirely different velocity models could be considered in the same class type due to their identical average velocities. The objective of the present study is to underline some of the risks associated with solely using Vs30 as a classification tool. To do so, three imaginary soil profiles that are quite different in nature, but all with the same average Vs were considered and were subjected to the same earthquake excitation. Seismic records acquired at the ground surface demonstrated that the three sites have different ground motion amplifications. Then, the different ground responses were used to excite a five-story structure. Results confirmed that even sites from the same class can indeed exhibit different responses under identical seismic excitations. Our results demonstrated that caution should be practiced when large-contrast velocity models are involved as such profiles are prone to pronounced ground motion amplification. This study, which serves as link between soil dynamics and structural dynamics, warns practitioners about the risks associated with oversimplifying the subsurface profile. Such oversimplifications can potentially undermine the safety of existing or future structures.

2020 ◽  
Author(s):  
Che-Min Lin ◽  
Jyun-Yan Huang ◽  
Chun-Hsiang Kuo ◽  
Kuo-Liang Wen

<p>There are two kinds of bedrocks that are widely used in seismology and earthquake engineering respectively. The seismology field uses the “seismic bedrock” to define an interface that has a practically lateral extent. The strata deeper than this interface is much more homogeneous in comparison with the shallower one. It is common to set the seismic bedrock within the upper crust has 3000 m/sec of the shear wave velocity. In contrast, the earthquake engineering prefers the shallower interface which dominates the main seismic site amplification, especially the predominant frequency of ground motion. The interface is called “Engineering Bedrock”, which the underlying stratum has the shear wave velocity from 300 to 1000 m/sec for different purposes. But, the reference shear wave velocity of the engineering bedrock is mostly defined as 760 m/sec for ground motion prediction and simulation. In Taiwan, the Central Weather Bureau (CWB) constructed and operates a dense strong-motion network called TSMIP (Taiwan Strong Motion Instrument Program), which provides numerous ground motion data for seismology and earthquake engineering. In our previous studies, the shallow shear wave velocity profiles of over 700 TSMIP stations were estimated by the Receiver Function method. The velocity profiles are from the ground surface to the depth with the shear wave velocity of at least 2000 m/sec. It allows us to compare the theoretical site amplification of the velocity profile of TSMIP stations with their observed one from the seismic records. The variance of fitness between theoretical and observed amplifications through shear wave velocity is analyzed to evaluate which reference velocity can appropriately define the depth of engineering bedrock, where the most site amplification occur beneath, in all of Taiwan. The difference between local geology is also discussed. Finally, an engineering bedrock map is proposed for further applications in earthquake engineering.</p>


2021 ◽  
pp. 875529302110010
Author(s):  
Sameer Ladak ◽  
Sheri Molnar ◽  
Samantha Palmer

Site characterization is a crucial component in assessing seismic hazard, typically involving in situ shear-wave velocity ( VS) depth profiling, and measurement of site amplification including site period. Noninvasive methods are ideal for soil sites and become challenging in terms of field logistics and interpretation in more complex geologic settings including rock sites. Multiple noninvasive active- and passive-seismic techniques are applied at 25 seismograph stations across Eastern Canada. It is typically assumed that these stations are installed on hard rock. We investigate which site characterization methods are suitable at rock sites as well as confirm the hard rock assumption by providing VS profiles. Active-source compression-wave refraction and surface wave array techniques consistently provide velocity measurements at rock sites; passive-source array testing is less consistent but it is our most suitable method in constraining the rock VS. Bayesian inversion of Rayleigh wave dispersion curves provides quantitative uncertainty in the rock VS. We succeed in estimating rock VS at 16 stations, with constrained rock VS estimates at 7 stations that are consistent with previous estimates for Precambrian and Paleozoic rock types. The National Building Code of Canada uses solely the time-averaged shear-wave velocity of the upper 30 m ( VS30) to classify rock sites. We determine a mean VS30 of ∼ 1600 m/s for 16 Eastern Canada stations; the hard rock assumption is correct (>1500 m/s) but not as hard as often assumed (∼2000 m/s). Mean variability in VS30 is ∼400 m/s and can lead to softer rock classifications, in particular, for Paleozoic rock types with lower average rock VS near the hard/soft rock boundary. Microtremor and earthquake horizontal-to-vertical spectral ratios are obtained and provide site period classifications as an alternative to VS30.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yumin Ji ◽  
Byungmin Kim ◽  
Kiseog Kim

AbstractThis study evaluates the potentials of liquefaction caused by the 2017 moment magnitude 5.4 earthquake in Pohang City, South Korea. We obtain shear wave velocity profiles measured by suspension PS logging tests at the five sites near the epicenter. We also perform downhole tests at three of the five sites. Among the five sites, the surface manifestations (i.e., sand boils) were observed at the three sites, and not at the other two sites. The maximum accelerations on the ground surface at the five sites are estimated using the Next Generation Attenuation relationships for Western United State ground motion prediction equations. The shear wave velocity profiles from the two tests are slightly different, resulting in varying cyclic resistance ratios, factors of safety against liquefaction, and liquefaction potential indices. Nevertheless, we found that both test approaches can be used to evaluate liquefaction potentials. The liquefaction potential indices at the liquefied sites are approximately 1.5–13.9, whereas those at the non-liquefied sites are approximately 0–0.3.


2006 ◽  
Vol 23 (1) ◽  
pp. 57s-68s ◽  
Author(s):  
Masashi MATSUOKA ◽  
Kazue WAKAMATSU ◽  
Kazuo FUJIMOTO ◽  
Saburoh MIDORIKAWA

Sign in / Sign up

Export Citation Format

Share Document