scholarly journals Atmospheric Deposition of Sulfur, Nitrogen and Basic Cations onto European Forests: Observations and Model Calculations

1989 ◽  
pp. 103-111 ◽  
Author(s):  
Wilfried Ivens ◽  
Albert Klein Tank ◽  
Pekka Kauppi ◽  
Joseph Alcamo
2016 ◽  
Author(s):  
M. Camino-Serrano ◽  
E. Graf Pannatier ◽  
S. Vicca ◽  
S. Luyssaert ◽  
M. Jonard ◽  
...  

Abstract. Dissolved organic carbon (DOC) in soil solution is connected to DOC in surface waters through hydrological flows. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site-studies has failed so far to establish consistent trends in soil solution DOC, whereas increasing concentrations in European surface waters over the past decades appear to be the norm, possibly as a result from acidification recovery. The objectives of this study were therefore to understand the long-term trends of soil solution DOC from a large number of European forests (ICP Forests Level II plots) and determine their main physico-chemical and biological controls. We applied trend analys is at two levels: 1) to the entire European dataset and 2) to the individual time series and related trends with plot characteristics, i.e., soil and vegetation properties, soil solution chemistry and atmospheric deposition loads. Analyses of the entire dataset showed an overall increasing trend in DOC concentrations in the organic layers, but, at individual plots and depths, there was no clear overall trend in soil solution DOC across Europe with temporal slopes of soil solution DOC ranging between −16.8 % yr−1 and +23 % yr−1 (median= +0.4 % yr−1). The non-significant trends (40 %) outnumbered the increasing (35 %) and decreasing trends (25 %) across the 97 ICP Forests Level II sites. By means of multivariate statistics, we found increasing DOC concentrations with increasing mean nitrate (NO3−) deposition and decreasing DOC concentrations with decreasing me an sulphate (SO42−) deposition, with the magnitude of these relationships depending on plot deposition history. While the attribution of increasing trends in DOC to the reduct ion of SO42− deposition could be confirmed in N-poorer forests, in agreement with observations in surface waters, this was not the case in N-richer forests. In conclusion, long-term trends of soil solution DOC reflected the interactions between controls acting at local (soil and vegetation properties) and regional (atmospheric deposition of SO42− and inorganic N) scales.


2020 ◽  
Author(s):  
Sanja Frka ◽  
Andrea Milinković ◽  
Abra Penezić ◽  
Saranda Bakija Alempijević ◽  
Blaženka Gašparović ◽  
...  

<p><strong>Biochemical responses of oligotrophic Adriatic Sea surface layers to atmospheric deposition inputs</strong></p><p><strong> </strong></p><p>Frka<sup>1</sup>, A. Miliković<sup>1</sup>, A. Penezić<sup>1</sup>, S. Bakija Alempijević<sup>1</sup>, B. Gašparović<sup>1</sup>, S. Skejić<sup>2</sup>, D. Šantić<sup>2</sup>, S. Brzaj<sup>3</sup>, V. Džaja Grgičin<sup>3</sup>, S. Vidič<sup>3</sup>, I. Šimić<sup>4</sup>, I. Bešlić<sup>4</sup>, S. Žužul<sup>4</sup>, R. Godec<sup>4</sup>, G. Pehnec<sup>4</sup></p><p><sup>1</sup>Division for marine and environmental research, Ruđer Bošković Institute, Zagreb, Croatia</p><p><sup>2</sup>Institute of Oceanography and Fisheries, Split, Croatia</p><p><sup>3</sup>Croatian Meteorological and Hydrological Service, Zagreb, Croatia</p><p><sup>4</sup>Institute for Medical Research and Occupational Health, Zagreb, Croatia</p><p> </p><p>The atmosphere is a significant pathway by which both natural and anthropogenic material is transported from continents to both coastal and open seas. Once deposited through atmospheric deposition (AD) processing, atmospheric particulate matter (PM) provides the aqueous ecosystems with an external source of nutrients and pollutants. This, in turn, influences the organic matter (OM) production by the phytoplankton, changes CO<sub>2</sub> uptake and indirectly affects the climate. The input of AD is especially important in oligotrophic environments and it is expected to increase in the future scenarios of a warmer atmosphere with increased PM emissions and deposition rates. While the majority of the data related to the AD impacts generated so far in the Mediterranean have been conducted on its western and eastern regions, the effects of the AD inputs to oligotrophic surface waters of the Adriatic Sea sub-basin are unknown. This work is designed to assess the impact of AD on complex biochemical responses of Adriatic oligotrophic systems, considering the sea surface microlayer (SML) at the air-water interface.</p><p>Field campaign was conducted during the period of retrieval of sea surface oligotrophic conditions (February-July 2019) at the Martinska, Central Adriatic, Croatia. On-line black carbon (BC) concentrations were measured while the PM<sub>10</sub>, wet and total deposition samples as well as the SML and underlying water (ULW; 0.5 m depth) samples were collected simultaneously. The temporal dynamics of the SML biology as well as concentrations of  inorganic and organic constituents enabled the assessment of their sources and the nature of the enrichments taking place within the SML. The first comprehensive insight into concentration levels of macro nutrients (N, P), trace metals (eg. Cu, Pb, Cd, Ni, Zn, Co) and OM (including aromatic pollutants) in atmospheric samples, their transport history, source apportionment and deposition fluxes to the oligotrophic Adriatic area will be presented. Daily and seasonal variations of PM<sub>10</sub> composition were affected by local traffic and open-fire events as well as by local meteorological conditions and long-range transport. The BC contribution of biomass burning versus fossil fuel combustion changed seasonally. Source apportionment module of LOTOS-EUROS chemical transport model enabled identification and quantification of main source areas contributing to deposition of PM. The main PM contributor is a public power sector outside Croatia while other contributing sectors are energy production, traffic, residential combustion as well as shipping. First deposition fluxes estimates show reasonable agreement between model calculations and measured data, and could be used for more general assessments of atmospheric inputs.</p><p> </p><p><strong>Acknowledgment</strong>: This work has been supported by Croatian Science Foundation under the IP-2018-01-3105 project: Biochemical responses of oligotrophic Adriatic surface ecosystems to atmospheric deposition inputs.</p>


2017 ◽  
Vol 8 (4) ◽  
pp. 901-919 ◽  
Author(s):  
Björn Claremar ◽  
Karin Haglund ◽  
Anna Rutgersson

Abstract. The shipping sector is a significant contributor to emissions of air pollutants in marine and coastal regions. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion and concentration of sulfur, nitrogen, and particulate matter, as well as deposition of oxidized sulfur and nitrogen from the international maritime sector in the Baltic Sea and the North Sea, have been made for the years 2011 to 2013. The contribution from shipping is highest along shipping lanes and near large ports for concentration and dry deposition. Sulfur is the most important pollutant coupled to shipping. The contribution of both SO2 concentration and dry deposition of sulfur represented up to 80 % of the total in some regions. WHO guidelines for annual concentrations were not trespassed for any analysed pollutant, other than PM2.5 in the Netherlands, Belgium, and central Poland. However, due to the resolution of the numerical model, 50 km  ×  50 km, there may be higher concentrations locally close to intense shipping lanes. Wet deposition is more spread and less sensitive to model resolution. The contribution of wet deposition of sulfur and nitrogen from shipping was up to 30 % of the total wet deposition. Comparison of simulated to measured concentration at two coastal stations close to shipping lanes showed some underestimations and missed maximums, probably due to resolution of the model and underestimated ship emissions. A change in regulation for maximum sulfur content in maritime fuel, in 2015 from 1 to 0.1 %, decreases the atmospheric sulfur concentration and deposition significantly. However, due to costs related to refining, the cleaning of exhausts through scrubbers has become a possible economic solution. Open-loop scrubbers meet the air quality criteria but their consequences for the marine environment are largely unknown. The resulting potential of future acidification in the Baltic Sea, both from atmospheric deposition and from scrubber water along the shipping lanes, based on different assumptions about sulfur content in fuel, scrubber usage, and increased shipping density has been assessed. The increase in deposition for different shipping and scrubber scenarios differs for the basins in the Baltic Sea, with highest potential of acidification in the southern basins with high traffic. The proportion of ocean-acidifying sulfur from ships increases when taking scrubber water into account and the major reason for increasing acidifying nitrogen from ships is increasing ship traffic. Also, with the implementation of emission control for nitrogen, the effect of scrubbers on acidification is evident. This study also generates a database of shipping and scrubber scenarios for atmospheric deposition and scrubber exhaust from the period 2011 to 2050.


2020 ◽  
Author(s):  
Stelios Myriokefalitakis ◽  
Matthias Gröger ◽  
Jenny Hieronymus ◽  
Ralf Döscher

<p>Atmospheric deposition of trace constituents of natural and anthropogenic origin act as a nutrient source into the open ocean, affecting the marine ecosystem functioning and subsequently the exchange of CO<sub>2</sub> between the atmosphere and the global ocean. Among other species that are deposited into the open ocean, nitrogen (N), iron (Fe), and phosphorus (P) are considered as highly significant nutrients that can limit marine phytoplankton growth and thus directly impact on ocean carbon fluxes in the ocean, particularly where the nutrient availability is the limiting factor for productivity. For this work, we take into account the up-to-date understanding of the effects of air quality on the atmospheric aerosol cycles to investigate the potential ocean biogeochemistry perturbations via the atmospheric input with the European Community Earth System Model EC-Earth (http://www.ec-earth.org/), which is jointly developed by several European institutes. In more detail, state-of-the-art N, Fe, and P atmospheric deposition fields are coupled to the embedded marine biogeochemistry model and the response of oceanic biogeochemistry to natural and anthropogenic atmospheric aerosols deposition changes is demonstrated and quantified. Model calculations show that compared to the present day, the preindustrial atmospheric deposition fluxes are calculated lower (~1.7, ~1.5, and ~1.4 times for N, Fe, and P, respectively) corresponding to a respective lower marine primary production. On the other hand, future changes in air pollutants under the RCP8.5 scenario result in a modest decrease of the bioaccessible nutrients input into the global ocean (~ -15%, ~ -16% and ~ -22% for N, Fe and P, respectively) and overall to a slightly lower projected export production compared to present day. Although the impact of atmospheric processing on atmospheric inputs to the ocean results in a relatively weak response in total global-scale simulated marine productivity estimates, strong regional changes up to 40-60% are calculated in the subtropical gyres. Overall, this study indicates that both the atmospheric processing and the speciation of the atmospheric nutrients deposited in the ocean should be considered in detail in carbon-cycling studies, since they may significantly affect the marine ecosystems and thus the current estimates of the carbon cycle feedbacks to climate.</p><p>This work has been financed by the National Observatory of Athens internal grant (number 5065), the “Atmospheric deposition impacts on the ocean system”, and the European Commission's Horizon 2020 Framework Programme, under Grant Agreement number 641816, the "Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination, and Outreach (CRESCENDO)".</p>


2007 ◽  
Vol 22 (6) ◽  
pp. 1129-1139 ◽  
Author(s):  
Richard Fischer ◽  
Volker Mues ◽  
Erwin Ulrich ◽  
Georg Becher ◽  
Martin Lorenz

1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


2003 ◽  
Vol 107 ◽  
pp. 1427-1427 ◽  
Author(s):  
J. Frank ◽  
M. Krachler ◽  
W. Shotyk

Sign in / Sign up

Export Citation Format

Share Document