Wave Physics of Sound Field. The Sound Beam

1977 ◽  
pp. 62-89 ◽  
Author(s):  
Josef Krautkrämer ◽  
Herbert Krautkrämer
Keyword(s):  
1983 ◽  
pp. 62-89 ◽  
Author(s):  
Josef Krautkrämer ◽  
Herbert Krautkrämer
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Haisen Li ◽  
Jingxin Ma ◽  
Jianjun Zhu ◽  
Baowei Chen

The Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation has been widely used in the simulation and calculation of nonlinear sound fields. However, the accuracy of KZK equation reduced due to the deflection of the direction of the sound beam when the sound beam is inclined incidence. In this paper, an equivalent sound source model is proposed to make the calculation direction of KZK calculation model consistent with the sound propagation direction after acoustic refraction, so as to improve the accuracy of sound field calculation under the inclined incident conditions. The theoretical research and pool experiment verify the feasibility and effectiveness of the proposed method.


1973 ◽  
Vol 16 (2) ◽  
pp. 267-270 ◽  
Author(s):  
John H. Mills ◽  
Seija A. Talo ◽  
Gloria S. Gordon

Groups of monaural chinchillas trained in behavioral audiometry were exposed in a diffuse sound field to an octave-band noise centered at 4.0 k Hz. The growth of temporary threshold shift (TTS) at 5.7 k Hz from zero to an asymptote (TTS ∞ ) required about 24 hours, and the growth of TTS at 5.7 k Hz from an asymptote to a higher asymptote, about 12–24 hours. TTS ∞ can be described by the equation TTS ∞ = 1.6(SPL-A) where A = 47. These results are consistent with those previously reported in this journal by Carder and Miller and Mills and Talo. Whereas the decay of TTS ∞ to zero required about three days, the decay of TTS ∞ to a lower TTS ∞ required about three to seven days. The decay of TTS ∞ in noise, therefore, appears to require slightly more time than the decay of TTS ∞ in the quiet. However, for a given level of noise, the magnitude of TTS ∞ is the same regardless of whether the TTS asymptote is approached from zero, from a lower asymptote, or from a higher asymptote.


1968 ◽  
Vol 11 (1) ◽  
pp. 204-218 ◽  
Author(s):  
Elizabeth Dodds ◽  
Earl Harford

Persons with a high frequency hearing loss are difficult cases for whom to find suitable amplification. We have experienced some success with this problem in our Hearing Clinics using a specially designed earmold with a hearing aid. Thirty-five cases with high frequency hearing losses were selected from our clinical files for analysis of test results using standard, vented, and open earpieces. A statistical analysis of test results revealed that PB scores in sound field, using an average conversational intensity level (70 dB SPL), were enhanced when utilizing any one of the three earmolds. This result was due undoubtedly to increased sensitivity provided by the hearing aid. Only the open earmold used with a CROS hearing aid resulted in a significant improvement in discrimination when compared with the group’s unaided PB score under earphones or when comparing inter-earmold scores. These findings suggest that the inclusion of the open earmold with a CROS aid in the audiologist’s armamentarium should increase his flexibility in selecting hearing aids for persons with a high frequency hearing loss.


Author(s):  
Jorge TREVINO ◽  
Takuma OKAMOTO ◽  
Yukio IWAYA ◽  
Yôiti SUZUKI
Keyword(s):  

2015 ◽  
Vol 39 (1) ◽  
pp. 153-154
Author(s):  
Mirosław Meissner

Abstract Elżbieta M. Walerian, Ph.D., D.Sc., a retired employee of the Institute of Fundamental Technological Research of the Polish Academy of Sciences (IPPT PAN), passed away after a serious illness, on the 26th December 2013. She was one of the scientific leaders in the Section of Environmental Acoustics of IPPT PAN and her career, educational and organizational activities were inseparably linked with the acoustics. Elżbieta Walerian was born on August 9th 1950 in Poznań. She graduated from the Faculty of Mathematics, Physics and Chemistry of the Adam Mickiewicz University in Poznań, receiving her Master of Science degree in the environmental acoustics in 1973. Five years later, under the supervision of Professor Ignacy Malecki, she obtained her PhD title, in the physical acoustics, in IPPT PAN in Warsaw. In 1979 she began working at the Section of Environmental Acoustics of IPPT PAN, where she dealt with the diffraction of acoustic waves and a description of the sound field produced by vehicles moving in an urban area.


Sign in / Sign up

Export Citation Format

Share Document