The Pyruvate Dehydrogenase Complex and Tricarboxylic Acid Cycle

1995 ◽  
pp. 109-119 ◽  
Author(s):  
D. S. Kerr ◽  
A. B. Zinn
1990 ◽  
Vol 68 (10) ◽  
pp. 1210-1217 ◽  
Author(s):  
Bhagu R. Bhavnani ◽  
Duncan G. Wallace

The metabolic pathways by which the glycogen is utilized by fetal tissues is not well established. In the present study the ontogeny of seven key enzymes involved in glycolysis and the tricarboxylic acid cycle has been established for rabbit fetal lung, heart, and liver. In the fetal lung the activities of phosphofructokinase, pyruvate kinase, lactic dehydrogenase, citrate synthase, and malate dehydrogenase increase from day 21 to 25. Thereafter the levels either drop to day 19 levels or do not change. The isocitrate dehydrogenase activity continues to increase from day 19 of gestation to maximum level on day 31 of gestation. In fetal heart the pattern of activity is similar, but in fetal liver most of the enzymes reach maximum levels earlier and, with the exception of pyruvate kinase, do not show a significant fall in activity near term. The pattern of development of pyruvate dehydrogenase complex is different; maximum activity is observed on day 27 in fetal lung and heart and on day 21 in fetal liver. These results indicate that all three fetal tissues can oxidize glucose. Also, the accumulation of glycogen, particularly in fetal lung, appears to ensure that at specific times during gestation adequate quantities of energy (ATP) and substrates, required for surfactant phospholipid synthesis, are available independent of maternal supply of glucose or during brief episodes of hypoxia.Key words: glycogen, glycolysis, tricarboxylic acid cycle, pyruvate dehydrogenase, surfactant.


2004 ◽  
Vol 381 (3) ◽  
pp. 743-752 ◽  
Author(s):  
Nisha GARG ◽  
Arpad GERSTNER ◽  
Vandanajay BHATIA ◽  
James DeFORD ◽  
John PAPACONSTANTINOU

Cardiac hypertrophy and remodelling in chagasic disease might be associated with mitochondrial dysfunction. In the present study, we characterized the cardiac metabolic responses to Trypanosoma cruzi infection and progressive disease severity using a custom-designed mitoarray (mitochondrial function-related gene array). Mitoarrays consisting of known, well-characterized mitochondrial function-related cDNAs were hybridized with 32P-labelled cDNA probes generated from the myocardium of mice during immediate early, acute and chronic phases of infection and disease development. The mitoarray successfully identified novel aspects of the T. cruzi-induced alterations in the expression of the genes related to mitochondrial function and biogenesis that were further confirmed by real-time reverse transcriptase–PCRs. Of note is the up-regulation of transcripts essential for fatty acid metabolism associated with repression of the mRNAs for pyruvate dehydrogenase complex in infected hearts. We observed no statistically significant changes in mRNAs for the enzymes of tricarboxylic acid cycle. These results suggest that fatty acid metabolism compensates the pyruvate dehydrogenase complex deficiencies for the supply of acetyl-CoA for a tricarboxylic acid cycle, and chagasic hearts may not be limited in reduced energy (NADH and FADH2). The observation of a decrease in mRNA level for several subunits of the respiratory chain complexes by mitoarray as well as global genome analysis suggests a limitation in mitochondrial oxidative phosphorylation-mediated ATP-generation capacity as the probable basis for cardiac homoeostasis in chagasic disease.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Samar HK Tareen ◽  
Martina Kutmon ◽  
Ilja CW Arts ◽  
Theo M de Kok ◽  
Chris T Evelo ◽  
...  

Abstract Background Metabolic flexibility is the ability of an organism to switch between substrates for energy metabolism, in response to the changing nutritional state and needs of the organism. On the cellular level, metabolic flexibility revolves around the tricarboxylic acid cycle by switching acetyl coenzyme A production from glucose to fatty acids and vice versa. In this study, we modelled cellular metabolic flexibility by constructing a logical model connecting glycolysis, fatty acid oxidation, fatty acid synthesis and the tricarboxylic acid cycle, and then using network analysis to study the behaviours of the model. Results We observed that the substrate switching usually occurs through the inhibition of pyruvate dehydrogenase complex (PDC) by pyruvate dehydrogenase kinases (PDK), which moves the metabolism from glycolysis to fatty acid oxidation. Furthermore, we were able to verify four different regulatory models of PDK to contain known biological observations, leading to the biological plausibility of all four models across different cells and conditions. Conclusion These results suggest that the cellular metabolic flexibility depends upon the PDC-PDK regulatory interaction as a key regulatory switch for changing metabolic substrates.


2003 ◽  
Vol 31 (6) ◽  
pp. 1143-1151 ◽  
Author(s):  
M.J. Holness ◽  
M.C. Sugden

PDC (pyruvate dehydrogenase complex) catalyses the oxidative decarboxylation of pyruvate, linking glycolysis to the tricarboxylic acid cycle. Regulation of PDC determines and reflects substrate preference and is critical to the ‘glucose–fatty acid cycle’, a concept of reciprocal regulation of lipid and glucose oxidation to maintain glucose homoeostasis developed by Philip Randle. Mammalian PDC activity is inactivated by phosphorylation by the PDKs (pyruvate dehydrogenase kinases). PDK inhibition by pyruvate facilitates PDC activation, favouring glucose oxidation and malonyl-CoA formation: the latter suppresses LCFA (long-chain fatty acid) oxidation. PDK activation by the high mitochondrial acetyl-CoA/CoA and NADH/NAD+ concentration ratios that reflect high rates of LCFA oxidation causes blockade of glucose oxidation. Complementing glucose homoeostasis in health, fuel allostasis, i.e. adaptation to maintain homoeostasis, is an essential component of the response to chronic changes in glycaemia and lipidaemia in insulin resistance. We develop the concept that the PDKs act as tissue homoeostats and suggest that long-term modulation of expression of individual PDKs, particularly PDK4, is an essential component of allostasis to maintain homoeostasis. We also describe the intracellular signals that govern the expression of the various PDK isoforms, including the roles of the peroxisome proliferator-activated receptors and lipids, as effectors within the context of allostasis.


2000 ◽  
Vol 346 (3) ◽  
pp. 651-657 ◽  
Author(s):  
Mary C. SUGDEN ◽  
Alexandra KRAUS ◽  
Robert A. HARRIS ◽  
Mark J. HOLNESS

Using immunoblot analysis with antibodies raised against recombinant pyruvate dehydrogenase kinase (PDK) isoenzymes PDK2 and PDK4, we demonstrate selective changes in PDK isoenzyme expression in slow-twitch versus fast-twitch skeletal muscle types in response to prolonged (48 h) starvation and refeeding after starvation. Starvation increased PDK activity in both slow-twitch (soleus) and fast-twitch (anterior tibialis) skeletal muscle and was associated with loss of sensitivity of PDK to inhibition by pyruvate, with a greater effect in anterior tibialis. Starvation significantly increased PDK4 protein expression in both soleus and anterior tibialis, with a greater response in anterior tibialis. Starvation did not effect PDK2 protein expression in soleus, but modestly increased PDK2 expression in anterior tibialis. Refeeding for 4 h partially reversed the effect of 48-h starvation on PDK activity and PDK4 expression in both soleus and anterior tibialis, but the response was more marked in soleus than in anterior tibialis. Pyruvate sensitivity of PDK activity was also partially restored by refeeding, again with the greater response in soleus. It is concluded that targeted regulation of PDK4 isoenzyme expression in skeletal muscle in response to starvation and refeeding underlies the modulation of the regulatory characteristics of PDK in vivo. We propose that switching from a pyruvate-sensitive to a pyruvate-insensitive PDK isoenzyme in starvation (a) maintains a sufficiently high pyruvate concentration to ensure that the glucose → alanine → glucose cycle is not impaired, and (b) may ‘spare’ pyruvate for anaplerotic entry into the tricarboxylic acid cycle to support the entry of acetyl-CoA derived from fatty acid (FA) oxidation into the tricarboxylic acid cycle. We further speculate that FA oxidation by skeletal muscle is both forced and facilitated by upregulation of PDK4, which is perceived as an essential component of the operation of the glucose-FA cycle in starvation.


1983 ◽  
Vol 210 (3) ◽  
pp. 677-683 ◽  
Author(s):  
J P Robertson ◽  
A Faulkner ◽  
R G Vernon

1. The following were measured in pieces of perirenal adipose tissue obtained from foetal lambs at about 120 days of gestation or within 3 days of term, and 9-month-old sheep: the rates of synthesis from glucose of fatty acids, acylglycerol glycerol, pyruvate and lactate; the rate of glucose oxidation to CO2 and the proportions contributed by the pentose phosphate cycle, pyruvate dehydrogenase and the tricarboxylic acid cycle; the activities of hexokinase, glucose 6-phosphate dehydrogenase, phosphofructokinase, pyruvate kinase and pyruvate dehydrogenase. 2. The total rate of glucose utilization was lower in pieces of adipose tissue from near-term lambs than 120-day foetal lambs and the pattern of glucose metabolism differed, with, for example, a much smaller proportion of glucose carbon being used for fatty acid synthesis, whereas a greater proportion of glucose oxidation occurred via the tricarboxylic acid cycle in the near-term lambs. In general, these differences in glucose metabolism were not associated with differences in the activities of the various enzymes listed above. 3. The rates of glucose utilization per fat-cell by 120-day foetal lambs and 9-month-old sheep were very similar but, again, the proportions metabolized to the various products differed. In particular, there was a smaller proportion of glucose oxidized via the pentose phosphate cycle and a greater proportion oxidized via pyruvate dehydrogenase and the tricarboxylic acid cycle in adipose tissue from foetal lambs. These differences were matched by a lower activity of glucose 6-phosphate dehydrogenase and a higher pyruvate dehydrogenase activity in fat-cells from the foetal lambs.


1986 ◽  
Vol 250 (1) ◽  
pp. E82-E86
Author(s):  
T. B. Patel

In isolated perfused livers of 24-h fasted rats, perfused with lactate (2 mM), pyruvate (0.5 mM), or dihydroxyacetone (1 mM), infusion of tolbutamide (0.5 mM) very rapidly (within 3 min) inhibited the rate of gluconeogenesis. However, gluconeogenesis from fructose (1 mM) and glycerol (1 mM) was not affected by tolbutamide. Tolbutamide also inhibited by 30% the rate of 14CO2 production from livers perfused with [1-14C]pyruvate, without altering the rate of 14CO2 production from [2-14C]pyruvate. The rate of hepatic glycolysis from fructose, glycerol, and dihydroxyacetone was also stimulated by 250, 40, and 100%, respectively, during tolbutamide infusion into perfused livers. Tolbutamide also inhibited the endogenous rate of hepatic ketogenesis by 30%. All of the tolbutamide-mediated alterations in hepatic metabolism were reversed upon withdrawal of tolbutamide from the perfusion medium. Decreased hepatic gluconeogenesis from lactate and pyruvate in the presence of tolbutamide was not a consequence of increased pyruvate oxidation via the pyruvate dehydrogenase complex or the tricarboxylic acid cycle.


1982 ◽  
Vol 202 (1) ◽  
pp. 67-76 ◽  
Author(s):  
K J Peuhkurinen ◽  
I E Hassinen

1. The role of pyruvate carboxylation in the net synthesis of tricarboxylic acid-cycle intermediates during acetate metabolism was studied in isolated rat hearts perfused with [1-14C]pyruvate. 2. The incorporation of the 14C label from [1-14C]pyruvate into the tricarboxylic acid-cycle intermediates points to a carbon input from pyruvate via enzymes in addition to pyruvate dehydrogenase and citrate synthase. 3. On addition of acetate, the specific radioactivity of citrate showed an initial maximum at 2 min, with a subsequent decline in labelling. The C-6 of citrate (which is removed in the isocitrate dehydrogenase reaction) and the remainder of the molecule showed differential labelling kinetics, the specific radioactivity of C-6 declining more rapidly. Since this carbon is lost in the isocitrate dehydrogenase reaction, the results are consistent with a rapid inactivation of pyruvate dehydrogenase after the addition of acetate, which was confirmed by measuring the 14CO2 production from [1-14C]pyruvate. 4. The results can be interpreted to show that carboxylation of pyruvate to the C4 compounds of the tricarboxylic acid cycle occurs under conditions necessitating anaplerosis in rat myocardium, although the results do not identify the enzyme involved. 5. The specific radioactivity of tissue lactate was too low to allow it to be used as an indicator of the specific radioactivity of the intracellular pyruvate pool. The specific radioactivity of alanine was three times that of lactate. When the hearts were perfused with [1-14C]lactate, the specific radioactivity of alanine was 70% of that of pyruvate. The results suggest that a subcompartmentation of lactate and pyruvate occurs in the cytosol.


Sign in / Sign up

Export Citation Format

Share Document