A Formula for the Boundary Integral in the Potential Problem of Two-Dimensional Anisotropic Materials and its Evaluation

1992 ◽  
pp. 324-332
Author(s):  
Tomohiro Tabata ◽  
Toshihiko Kuwahara ◽  
Tsuyoshi Takeda
2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Alex Doak ◽  
Jean-Marc Vanden-Broeck

AbstractThis paper concerns the flow of fluid exiting a two-dimensional pipe and impacting an infinite wedge. Where the flow leaves the pipe there is a free surface between the fluid and a passive gas. The model is a generalisation of both plane bubbles and flow impacting a flat plate. In the absence of gravity and surface tension, an exact free streamline solution is derived. We also construct two numerical schemes to compute solutions with the inclusion of surface tension and gravity. The first method involves mapping the flow to the lower half-plane, where an integral equation concerning only boundary values is derived. This integral equation is solved numerically. The second method involves conformally mapping the flow domain onto a unit disc in the s-plane. The unknowns are then expressed as a power series in s. The series is truncated, and the coefficients are solved numerically. The boundary integral method has the additional advantage that it allows for solutions with waves in the far-field, as discussed later. Good agreement between the two numerical methods and the exact free streamline solution provides a check on the numerical schemes.


2020 ◽  
Vol 23 (2) ◽  
pp. 378-389
Author(s):  
Ferenc Izsák ◽  
Gábor Maros

AbstractFractional-order elliptic problems are investigated in case of inhomogeneous Dirichlet boundary data. The boundary integral form is proposed as a suitable mathematical model. The corresponding theory is completed by sharpening the mapping properties of the corresponding potential operators. The existence-uniqueness result is stated also for two-dimensional domains. Finally, a mild condition is provided to ensure the existence of the classical solution of the boundary integral equation.


1986 ◽  
Vol 29 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Christian Constanda

Kirchhoff's kinematic hypothesis that leads to an approximate two-dimensional theory of bending of elastic plates consists in assuming that the displacements have the form [1]In general, the Dirichlet and Neumann problems for the equilibrium equations obtained on the basis of (1.1) cannot be solved by the boundary integral equation method both inside and outside a bounded domain because the corresponding matrix of fundamental solutions does not vanish at infinity [2]. However, as we show in this paper, the method is still applicable if the asymptotic behaviour of the solution is suitably restricted.


2018 ◽  
Vol 24 (6) ◽  
pp. 1821-1848 ◽  
Author(s):  
Yuan Li ◽  
CuiYing Fan ◽  
Qing-Hua Qin ◽  
MingHao Zhao

An elliptical crack subjected to coupled phonon–phason loadings in a three-dimensional body of two-dimensional hexagonal quasicrystals is analytically investigated. Owing to the existence of the crack, the phonon and phason displacements are discontinuous along the crack face. The phonon and phason displacement discontinuities serve as the unknown variables in the generalized potential function method which are used to derive the boundary integral equations. These boundary integral equations governing Mode I, II, and III crack problems in two-dimensional hexagonal quasicrystals are expressed in integral differential form and hypersingular integral form, respectively. Closed-form exact solutions to the elliptical crack problems are first derived for two-dimensional hexagonal quasicrystals. The corresponding fracture parameters, including displacement discontinuities along the crack face and stress intensity factors, are presented considering all three crack cases of Modes I, II, and III. Analytical solutions for a penny-shaped crack, as a special case of the elliptical problem, are given. The obtained analytical solutions are graphically presented and numerically verified by the extended displacement discontinuities boundary element method.


Geophysics ◽  
1987 ◽  
Vol 52 (6) ◽  
pp. 765-771 ◽  
Author(s):  
B. Kummer ◽  
A. Behle ◽  
F. Dorau

We have constructed a hybrid scheme for elastic‐wave propagation in two‐dimensional laterally inhomogeneous media. The algorithm is based on a combination of finite‐difference techniques and the boundary integral equation method. It involves a dedicated application of each of the two methods to specific domains of the model structure; finite‐difference techniques are applied to calculate a set of boundary values (wave field and stress field) in the vicinity of the heterogeneous domain. The continuation of the near‐field response is then calculated by means of the boundary integral equation method. In a numerical example, the hybrid method has been applied to calculate a plane‐wave response for an elastic lens embedded in a homogeneous environment. The example shows that the hybrid scheme enables more efficient modeling, with the same accuracy, than with pure finite‐difference calculations.


Sign in / Sign up

Export Citation Format

Share Document