scholarly journals Polarization Issues

Author(s):  
Michiko G. Minty ◽  
Frank Zimmermann

AbstractThe study of spin dynamics in synchrotrons has evolved over the years as has the desire for achieving polarized particle beams of the highest possible beam energies. A selection of reviews of the dynamics of polarized beams may be found in [1]–[9]. In this chapter, we focus on experimental data and describe spin transport in circular accelerators and transport lines. Except where explicitly mentioned, radiative effects in electron accelerators or very high energy proton accelerators are not treated here. We begin with a review of the Thomas-BMT equation for spin motion. This will be given in terms of the SU(2) spinor representation. Spinor algebra will be introduced and applied in the description of techniques used for preserving the beam polarization during acceleration through depolarizing resonances at moderate beam energies.

1964 ◽  
Vol 82 (1) ◽  
pp. 3-81 ◽  
Author(s):  
Evgenii L. Feinberg ◽  
Dmitrii S. Chernavskii

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Whitmore ◽  
R. I. Mackay ◽  
M. van Herk ◽  
J. K. Jones ◽  
R. M. Jones

AbstractThis paper presents the first demonstration of deeply penetrating dose delivery using focused very high energy electron (VHEE) beams using quadrupole magnets in Monte Carlo simulations. We show that the focal point is readily modified by linearly changing the quadrupole magnet strength only. We also present a weighted sum of focused electron beams to form a spread-out electron peak (SOEP) over a target region. This has a significantly reduced entrance dose compared to a proton-based spread-out Bragg peak (SOBP). Very high energy electron (VHEE) beams are an exciting prospect in external beam radiotherapy. VHEEs are less sensitive to inhomogeneities than proton and photon beams, have a deep dose reach and could potentially be used to deliver FLASH radiotherapy. The dose distributions of unfocused VHEE produce high entrance and exit doses compared to other radiotherapy modalities unless focusing is employed, and in this case the entrance dose is considerably improved over existing radiations. We have investigated both symmetric and asymmetric focusing as well as focusing with a range of beam energies.


1981 ◽  
Vol 8 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Kisei Kinoshita ◽  
Akira Minaka ◽  
Hiroyuki Sumiyoshi

2013 ◽  
Vol 777 (1) ◽  
pp. L18 ◽  
Author(s):  
Y. T. Tanaka ◽  
C. C. Cheung ◽  
Y. Inoue ◽  
Ł. Stawarz ◽  
M. Ajello ◽  
...  

1990 ◽  
Vol 42 (4) ◽  
pp. 1519-1529 ◽  
Author(s):  
S. Shaheen ◽  
F. D. Becchetti ◽  
D. A. Roberts ◽  
J. W. Jänecke ◽  
R. L. Stern ◽  
...  

2014 ◽  
Vol 734 ◽  
pp. 207-209 ◽  
Author(s):  
M.M. Block ◽  
L. Stodolsky

Sign in / Sign up

Export Citation Format

Share Document