Brittle-Ductile Transition

Author(s):  
Mervyn S. Paterson
Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1127-1130 ◽  
Author(s):  
Gabriel G. Meyer ◽  
Nicolas Brantut ◽  
Thomas M. Mitchell ◽  
Philip G. Meredith

Abstract The so-called “brittle-ductile transition” is thought to be the strongest part of the lithosphere, and defines the lower limit of the seismogenic zone. It is characterized not only by a transition from localized to distributed (ductile) deformation, but also by a gradual change in microscale deformation mechanism, from microcracking to crystal plasticity. These two transitions can occur separately under different conditions. The threshold conditions bounding the transitions are expected to control how deformation is partitioned between localized fault slip and bulk ductile deformation. Here, we report results from triaxial deformation experiments on pre-faulted cores of Carrara marble over a range of confining pressures, and determine the relative partitioning of the total deformation between bulk strain and on-fault slip. We find that the transition initiates when fault strength (σf) exceeds the yield stress (σy) of the bulk rock, and terminates when it exceeds its ductile flow stress (σflow). In this domain, yield in the bulk rock occurs first, and fault slip is reactivated as a result of bulk strain hardening. The contribution of fault slip to the total deformation is proportional to the ratio (σf − σy)/(σflow − σy). We propose an updated crustal strength profile extending the localized-ductile transition toward shallower regions where the strength of the crust would be limited by fault friction, but significant proportions of tectonic deformation could be accommodated simultaneously by distributed ductile flow.


1989 ◽  
Vol 167 (1) ◽  
pp. 75-79 ◽  
Author(s):  
John V. Ross ◽  
Peter D. Lewis

1995 ◽  
Vol 32 (10) ◽  
pp. 1699-1719 ◽  
Author(s):  
Bruce E. Nesbitt ◽  
Karlis Muehlenbachs

In conjunction with the Lithoprobe southern Canadian Cordillera program, an extensive examination of geochemical indicators of origins, movement, chemical evolution, and economic significance of paleocrustal fluids was conducted. The study area covers approximately 360 000 km2from the Canadian Rockies to Vancouver Island. Research incorporated petrological, mineralogical, fluid-inclusion, δ18O, δD, δ13C, and Rb/Sr studies of samples of quartz ± carbonate veins and other rock types. The results of the study document a variety of pre-, syn-, and postorogenic, crustal fluid events. In the Rockies, a major pre-Laramide hydrothermal event was identified, which was comprised of a west to east migration of warm, saline brines. This was followed by a major circulation of meteoric water in the Rockies during Laramide uplift. In the southern Omineca extensional zone, convecting surface fluids penetrated to the brittle–ductile transition at 350–450 °C and locally into the underlying more ductile rocks. A principal conclusion of the study is that most quartz ± carbonate veins in metamorphic rocks in the southern Canadian Cordillera precipitated from deeply converted surface fluids. This conclusion supports a surface fluid convection model for the genesis of mesothermal Au–quartz veins, common in greenschist-facies rocks worldwide. The combination of our geochemical results with the results of other Lithoprobe studies indicates that widespread and deep convection of surface fluids in rocks undergoing active metamorphism is a commonplace phenomena in extensional settings, while in compressional-thrust settings the depth of penetration of surface fluids is more limited.


1991 ◽  
Vol 64 (1) ◽  
pp. 55-80 ◽  
Author(s):  
P. B. Hirsch ◽  
S. G. Roberts

2020 ◽  
Vol 2020 (01) ◽  
pp. 86-97
Author(s):  
M. V. Remez ◽  
◽  
Yu. M. Podrezov ◽  
V. I. Danylenko ◽  
M. I. Danylenko ◽  
...  

The temperature, structural, and rate sensitivity of the plasticity characteristics in γ-tita¬nium aluminides with different Al contents, doped with β-phase stabilization elements, are studied. Particular attention is paid to dislocation mechanisms that control the brittle-plastic transition. The main role of grain boundaries in the formation of plasticity characteristics is demonstrated. At low temperatures, the grain boundaries stop propagation of brittle transgranular cracks and confine the development of the plastic zone beyond the boundaries of an individual grain, creating the prerequisites for fracture in the microdeformation level. At elevated temperatures, the boundaries contribute to the formation of dislocations pile-up in the plastic zone with a stress concentration required to set off the Frank-Reed sources and the displacement of the plastic zone beyond the boundaries of an individual grain, changing its configuration and stress distribution and inhibiting the propagation of cracks. Acceleration of rela¬xation processes in the vicinity of the crack’s tip creates the prerequisites for the development of macrodeformation. Local relaxation processes at the crack’s tip contribute to high speed sensitivity of the plasticity characteristics. This effect has important practical consequences, since there is a temperature region near the upper working temperature of γ-TiAl alloys, where the stress value remains high (yield strength σ02 ~700 MPa and ultimate stress σul ~ 1200 MPa at bending tests) regardless of the strain rate, while deformation sharply increases at low speeds. As a result, it is possible to achieve a combination of high strength and ductility during creep tests. In samples tested by tension with low speed (10-5 s-1) the neck formation take a place. Deformation occurs by the dislocation-twinning mechanisms. At small deformations (7%) a twinning mechanism is preferable. Concentration of dislocations sharply increases at large deformations (32%) with formation of dislocation clusters. Stress relaxation on the boundary between γ-phase twins and α2-lamella, occurs by macroscopic shift on α2-lamella. Keywords: γ-titanium-aluminides, structure, strength, plasticity, brittle-ductile transition, temperature and rate sensitivity.


Sign in / Sign up

Export Citation Format

Share Document