Some Transportation Problems Under Uncertain Environments

Author(s):  
Pradip Kundu
Author(s):  
P. Senthil Kumar

In this article, the author categorises the solid transportation problem (STP) under uncertain environments. He formulates the mixed and fully intuitionistic fuzzy solid transportation problems (FIFSTPs) and utilizes the triangular intuitionistic fuzzy number (TIFN) to deal with uncertainty and hesitation. The PSK (P. Senthil Kumar) method for finding an intuitionistic fuzzy optimal solution for fully intuitionistic fuzzy transportation problem (FIFTP) is extended to solve the mixed and type-4 IFSTP and the optimal objective value of mixed and type-4 IFSTP is obtained in terms of triangular intuitionistic fuzzy number (TIFN). The main advantage of this method is that the optimal solution of mixed and type-4 IFSTP is obtained without using the basic feasible solution and the method of testing optimality. Moreover, the proposed method is computationally very simple and easy to understand. Finally, the procedure for the proposed method is illustrated with the help of numerical examples which is followed by graphical representation of the finding.


AI Magazine ◽  
2019 ◽  
Vol 40 (3) ◽  
pp. 41-57
Author(s):  
Manisha Mishra ◽  
Pujitha Mannaru ◽  
David Sidoti ◽  
Adam Bienkowski ◽  
Lingyi Zhang ◽  
...  

A synergy between AI and the Internet of Things (IoT) will significantly improve sense-making, situational awareness, proactivity, and collaboration. However, the key challenge is to identify the underlying context within which humans interact with smart machines. Knowledge of the context facilitates proactive allocation among members of a human–smart machine (agent) collective that balances auto­nomy with human interaction, without displacing humans from their supervisory role of ensuring that the system goals are achievable. In this article, we address four research questions as a means of advancing toward proactive autonomy: how to represent the interdependencies among the key elements of a hybrid team; how to rapidly identify and characterize critical contextual elements that require adaptation over time; how to allocate system tasks among machines and agents for superior performance; and how to enhance the performance of machine counterparts to provide intelligent and proactive courses of action while considering the cognitive states of human operators. The answers to these four questions help us to illustrate the integration of AI and IoT applied to the maritime domain, where we define context as an evolving multidimensional feature space for heterogeneous search, routing, and resource allocation in uncertain environments via proactive decision support systems.


2006 ◽  
Vol 168 (3) ◽  
pp. 398
Author(s):  
Wilbur ◽  
Volker H. W. Rudolf

Author(s):  
Marlon Boarnet ◽  
Randall C. Crane

Can transportation problems be fixed by the right neighborhood design? The tremendous popularity of the "new urbanism" and "livable communities" initiatives suggests that many persons think so. As a systematic assessment of attempts to solve transportation problems through urban design, this book asks and answers three questions: Can such efforts work? Will they be put into practice? Are they a good idea?


2020 ◽  
Vol 10 (15) ◽  
pp. 5335
Author(s):  
Kathleen Keogh ◽  
Liz Sonenberg

We address the challenge of multi-agent system (MAS) design for organisations of agents acting in dynamic and uncertain environments where runtime flexibility is required to enable improvisation through sharing knowledge and adapting behaviour. We identify behavioural features that correspond to runtime improvisation by agents in a MAS organisation and from this analysis describe the OJAzzIC meta-model and an associated design method. We present results from simulation scenarios, varying both problem complexity and the level of organisational support provided in the design, to show that increasing design time guidance in the organisation specification can enable runtime flexibility afforded to agents and improve performance. Hence the results demonstrate the usefulness of the constructs captured in the OJAzzIC meta-model.


Author(s):  
Kedar Nath Das ◽  
Rajeev Das ◽  
Debi Prasanna Acharjya

AbstractTransportation problem (TP) is a popular branch of Linear Programming Problem in the field of Transportation engineering. Over the years, attempts have been made in finding improved approaches to solve the TPs. Recently, in Quddoos et al. (Int J Comput Sci Eng (IJCSE) 4(7): 1271–1274, 2012), an efficient approach, namely ASM, is proposed for solving crisp TPs. However, it is found that ASM fails to provide better optimal solution in some cases. Therefore, a new and efficient ASM appoach is proposed in this paper to enhance the inherent mechanism of the existing ASM method to solve both crisp TPs and Triangular Intuitionistic Fuzzy Transportation Problems (TIFTPs). A least-looping stepping-stone method has been employed as one of the key factors to improve the solution quality, which is an improved version of the existing stepping-stone method (Roy and Hossain in, Operation research Titus Publication, 2015). Unlike stepping stone method, least-looping stepping-stone method only deals with few selected non-basic cells under some prescribed conditions and hence minimizes the computational burden. Therefore, the framework of the proposed method (namely LS-ASM) is a combination of ASM (Quddoos et al. 2012) and least-looping stepping-stone approach. To validate the performance of LS-ASM, a set of six case studies and a real-world problem (those include both crisp TPs and TIFTPs) have been solved. The statistical results obtained by LS-ASM have been well compared with the existing popular modified distribution (MODI) method and the original ASM method, as well. The statistical results confirm the superiority of the LS-ASM over other compared algorithms with a less computationl effort.


Sign in / Sign up

Export Citation Format

Share Document