Adverse Soil Mineral Availability

Plant Ecology ◽  
2018 ◽  
pp. 203-256
Author(s):  
Ernst-Detlef Schulze ◽  
Erwin Beck ◽  
Nina Buchmann ◽  
Stephan Clemens ◽  
Klaus Müller-Hohenstein ◽  
...  
2019 ◽  
Author(s):  
Prasanth Babu Ganta ◽  
Oliver Kühn ◽  
Ashour Ahmed

The phosphorus (P) immobilization and thus its availability for plants are mainly affected by the strong interaction of phosphates with soil components especially soil mineral surfaces. Related reactions have been studied extensively via sorption experiments especially by carrying out adsorption of ortho-phosphate onto Fe-oxide surfaces. But a molecular-level understanding for the P-binding mechanisms at the mineral-water interface is still lacking, especially for forest eco-systems. Therefore, the current contribution provides an investigation of the molecular binding mechanisms for two abundant phosphates in forest soils, inositol hexaphosphate (IHP) and glycerolphosphate (GP), at the diaspore mineral surface. Here a hybrid electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) based molecular dynamics simulation has been applied to explore the diaspore-IHP/GP-water interactions. The results provide evidence for the formation of different P-diaspore binding motifs involving monodentate (M) and bidentate (B) for GP and two (2M) as well as three (3M) monodentate for IHP. The interaction energy results indicated the abundance of the GP B motif compared to the M one. The IHP 3M motif has a higher total interaction energy compared to its 2M motif, but exhibits a lower interaction energy per bond. Compared to GP, IHP exhibited stronger interaction with the surface as well as with water. Water was found to play an important role in controlling these diaspore-IHP/GP-water interactions. The interfacial water molecules form moderately strong H-bonds (HBs) with GP and IHP as well as with the diaspore surface. For all the diaspore-IHP/GP-water complexes, the interaction of water with diaspore exceeds that with the studied phosphates. Furthermore, some water molecules form covalent bonds with diaspore Al atoms while others dissociate at the surface to protons and hydroxyl groups leading to proton transfer processes. Finally, the current results confirm previous experimental conclusions indicating the importance of the number of phosphate groups, HBs, and proton transfers in controlling the P-binding at soil mineral surfaces.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Wuyi Liu ◽  
Zafar Iqbal Khan ◽  
Naunain Mehmood ◽  
Asia Fardous ◽  
Sumaira Gondal ◽  
...  

Geoderma ◽  
2018 ◽  
Vol 326 ◽  
pp. 9-21 ◽  
Author(s):  
Masuda Akter ◽  
Heleen Deroo ◽  
Eddy De Grave ◽  
Toon Van Alboom ◽  
Mohammed Abdul Kader ◽  
...  

1999 ◽  
Vol 50 (2) ◽  
pp. 115-125 ◽  
Author(s):  
Maria Stenberg ◽  
Helena Aronsson ◽  
Börje Lindén ◽  
Tomas Rydberg ◽  
Arne Gustafson

1996 ◽  
Vol 32 (3) ◽  
pp. 339-349 ◽  
Author(s):  
M. Pala ◽  
A. Matar ◽  
A. Mazid

SUMMARYA series of researcher-managed wheat fertilizer trials was conducted on representative farmers' fields across northwest Syria between 1986 and 1990. Wheat grain and straw yields were strongly correlated with seasonal (October-May) rainfall, almost irrespective of soil fertility, crop sequence or fertilizer rate, with a highly significant response to nitrogen fertilizer which increased with increasing rainfall and decreasing initial soil mineral-nitrogen values. These results were summarized in regression equations which express yield in terms of fertilizer rates, seasonal rainfall and their interactions. The equations with applied nitrogen and seasonal rainfall were the most appropriate for determining fertilizer needs. Economic analysis indicated that all fertilizer treatment rates were profitable under existing price conditions and that fertilizer use would still be beneficial for a nitrogen price up to three times higher than that of the price of grain (weight for weight) with a seasonal rainfall of 250 mm, and up to six times higher with a seasonal rainfall of 450 mm.


2021 ◽  
Author(s):  
Na Li ◽  
Xinfeng Dong ◽  
Fuping Gan ◽  
Zhanchun Zou

Sign in / Sign up

Export Citation Format

Share Document