catch crop
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 22)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Artemi Cerdà ◽  
Iván Franch-Pardo ◽  
Agata Novara ◽  
Srikanta Sannigrahi ◽  
Jesús Rodrigo-Comino

AbstractThe main goal of this research was to conduct a biophysical, economic, social, and perception-based approach to foresee the solutions that could be used to mitigate the soil loss problem cost-effectively in “La Ribera del Xúquer” district (Valencia Region, Spain). To achieve these goals, a farmer perception survey was carried out, and an assessment of the biophysical impact of catch crops on soil organic matter, bulk density, steady-state infiltration rate (double-ring infiltrometer) and runoff generation, and soil erosion (rainfall simulation experiments) was carried out in 2016. For the biophysical approach, two paired plots, i.e., catch crops vs. glyphosate herbicide treatment (in advance, control plot), were selected under clementine citrus production. The results show that soil organic matter increased from 1.14 to 1.63%, and bulk density decreased from 1.47 to 1.27 g cm−3 after 10 years of treatments using catch crops. They also facilitated higher infiltration rates from 16.7 to 171 mm h−1 and a delay in runoff generation from 149 to 654 s for control and catch crop plots. Both runoff rates (from 50.6 to 3.1%) and soil erosion (from 3.9 to 0.04 Mg ha−1 h−1) were reduced once the catch crops were deployed in the field. After surveying (2018–2019), farmers stated the use of catch crops as a speck of dirt and a cause of possible loss of reputation when used. Moreover, farmers (N = 73) would accept the catch crops as an effective nature-based alternative only if a subsidy of 131.17€ ha−1 would be paid. The survey results also demonstrated that the farmers' community would see catch crop more as a benefit for the planet's health and society. Few constraints, such as ageing of the farmers’ population, lack of education and negative perception for other management factors, are the critical detrimental factors for adopting catch crops as a nature-based solution to reduce soil and water losses. There is a need for an effective agrarian extension service to change the fate of the current agriculture and achieve sustainability by adopting new management strategies in contemporary agricultural practices.


2021 ◽  
pp. 38-41
Author(s):  
Christel Roß ◽  
Nicol Stockfisch

The strategies for the future direction of agriculture in the EU and in Germany increasingly focus on climate and environmental protection. Catch crop cultivation may play a role in protecting soil, climate, water, and biodiversity. Data from a farm survey on sugar beet production in Germany between 2010 and 2019 were evaluated regarding the development of catch crop cultivation in connection with other production factors. The question was whether the cultivation of catch crops would support the intended environmental goals. It was investigated whether (1) fewer herbicides were used and (2) less nitrogen fertilizer was applied on fields with catch crops in comparison to fields without catch crops. The proportion of fields with catch crops before sugar beets has risen since greening was introduced as part of the EU’s common agricultural policy. Pesticide and nitrogen fertilizer applications were higher on fields with catch crops than on fields without. As these are results from a survey, it remains open why the use of herbicides and fertilizer in sugar beet cultivation is higher with than without catch crops. However, the results show that an increase in catch crop cultivation does not automatically have positive effects on the environment and climate. Sugar beet cultivation in practice should be further optimized in a targeted manner, so that greater benefits regarding environmental protection can be realized.


2021 ◽  
Author(s):  
Norman Gentsch ◽  
Diana Heuermann ◽  
Jens Boy ◽  
Steffen Schierding ◽  
Nicolaus von Wirén ◽  
...  

Abstract. Improving N cycling in agroecosystems is one of the key challenges in reducing the environmental footprint of agriculture. Further, uncertainty in precipitation makes crop water management relevant in regions where it has not been necessary thus far. Here, we focus on the potential of winter-killed catch crops to reduce N leaching losses from N mineralization over the winter and soil water management. We compared four single catch crops (white mustard, phacelia, Egyptian clover and bristle oat) and a fallow treatment with two catch crop mixtures with 4 and 12 plant species (Mix4 and Mix12). High-resolution soil mineral N (Nmin) monitoring in combination with modelling of spatiotemporal dynamics served to assess N cycling under winter-killed catch crops, while soil water was continuously monitored in the rooting zone. Catch crops depleted the residual Nmin pools by between 40 and 72 % compared to the fallow. The amount of residual N uptake was lowest for clover and not significantly different among the other catch crops. Catch crops that produce high N litter materials, such as clover and mustard leaves, showed an early N mineralization flush immediately after their termination and the highest leaching losses from litter mineralization over the winter. Except for clover, all catch crops showed Nmin values between 18 and 92 % higher on the sowing date of the following maize crop. However, only Mix12 was statistically significant. Catch crops depleted the soil water storage in the rooting zone during their growth in autumn and early winter, but preserved water later on when their residues cover the ground. The shallow incorporation of catch crop residues increased water storage capacity during the cropping season of the main crop even under drought conditions. Hence, catch cropping is not just a simple plant cover during the winter but improved the growth conditions for the following crop at decreased N losses. Mixtures have been shown to compensate for the weaknesses of individual catch crop species in terms of nutrient capture, mineralization and transfer to the following main crop as well as for soil water management. Detailed knowledge about plant performance during growth and litter mineralization patterns is necessary to make optimal use of their full potential.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2155
Author(s):  
Hendrik P. J. Smit ◽  
Thorsten Reinsch ◽  
Christof Kluß ◽  
Ralf Loges ◽  
Friedhelm Taube

High input dairy farms that are located on sandy soils in northwest Europe are predisposed to substantial nitrate leaching during a surplus of winter precipitation. Leys within integrated crop-livestock systems play an important role in soil fertility, soil C sequestration and soil N mineralization potentials. Therefore, leys are a feasible option that can be utilized to reduce local N losses to the environment, especially following maize grown for silage. We hypothesize that grass-clover leys ensure low nitrate leaching losses even when grazed intensively. The extent to which NO3-leaching occurred across seven different pasture management systems in terms of their sward composition, cutting, grazing, fertilization and combinations thereof was investigated in integrated animal-crop grazing systems over three winter periods (2017/2018, 2018/2019 and 2019/2020). The observed grazed systems were comprised of cut-used- and grazed grass-clover swards (0, 1 and 2 years after establishment following cereals), a catch crop grazed late in the year as well as a cut-used permanent grassland for comparison. Overall, all treatments resulted in nitrate leaching losses that did not exceed the WHO-threshold (25 mg nitrate/L). The highest level of NO3-leaching was observed in the catch crop system and the lowest in cut-used permanent grassland, with NO3-N losses of 19.6 ± 5.3 and 2.1 ± 0.3 kg NO3-N ha−1 year−1. Annual herbage yields were in the range of 0.9 to 12.4 t DM ha−1 and nitrogen yields varied between 181 ± 51 and 228 ± 66 kg N ha−1 during the study period. The highest herbage-N-yields were observed from the 1- and 2-year-old grass-clover leys. The highest N-field-balance was observed for the grazed leys and the lowest for the cut-used permanent grassland. However, no correlation was found between the highly positive field-N-balance and the amount of NO3-leached. This indicates a high N carry-over from grass-clover swards to the subsequent cash crop unit instead of increasing the risk of groundwater contamination from grazed leys in integrated animal crop-systems and underlines the eco-efficiency of dairy farming based on grazed ley systems.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3657
Author(s):  
Lucjan Pawłowski ◽  
Małgorzata Pawłowska ◽  
Cezary A. Kwiatkowski ◽  
Elżbieta Harasim

Biomass, a basic product of agriculture, is one of the main sinks of carbon in global cycle. Additionally, it can be used as a renewable source of energy, leading to depletion in CO2 emissions. The paper presents the results of estimations on the current and potential share of catch crop cultivation in climate change mitigation, in Poland, where the agricultural sector plays a significant economic role. The estimation of CO2 assimilation in biomass was performed on the basis of our own data on yields of commonly used catch crops, obtained in randomly selected 80 farms in Poland, and the content of carbon in the biomass. Calculation of energy potential of the biomass was conducted, assuming its conversion into biogas, on the basis of our own data on catch crop yields and the literature data on their biomethane potentials. The results have shown that catch crops in Poland, which are cultivated to an area of 1.177 mln ha sequestrate 6.85 mln t CO2 yr−1. However, considering the total area of fields used for spring crop cultivation, it is possible to increase the sequestration to 18.25 mln t CO2 yr−1, which constitutes about 6% of the annual emission of CO2 in Poland. Biomethane yields per hectare of particular crops ranged from 965 to 1762 m3 CH4 ha−1, and were significantly lower compared to maize, which is commonly in use in biogas plants. However, due to high biomethane potential and favorable chemical composition, catch crops can be a valuable co-substrate for the feedstocks with a high C:N ratio. The potential recovery of energy produced from aboveground biomass of catch crops harvested in Poland during the year is 6327 GWh of electricity and 7230 GWh of thermal energy. Thus, it is advisable to promote catch crops on a wide scale due to substantial environmental benefits of their cultivation.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 394
Author(s):  
Edward Wilczewski ◽  
Józef Sadkiewicz ◽  
Anna Piotrowska-Długosz ◽  
Lech Gałęzewski

Catch crop cultivation for green manure is considered to be a sustainable agricultural strategy whose main goal is to mitigate the negative effects of inappropriate plant sequent by increasing the soil biological activity, improving the nutrient content and reducing their loss from soil. Additionally, correct catch crop management is expected to improve the yield of consequent crops as well as their quality parameters. The effects of field pea when used as a catch crop, either incorporated in autumn or mulched and incorporated in spring vs. a control—without a catch crop on the soil chemical properties (total N, organic C, available forms of K and P) and the composition of spring barley grain and straw (total N, P, K, Ca) were studied for three years (2009 to 2011) in two-field, one-factor experiments, which were conducted on two different soil types (Luvisol and Phaeozem). The catch crop had no effect regarding the soil pH, soil organic C or total N content. In turn, applying a catch crop significantly affected the concentration of the available K (in both soils) and available P content (Phaeozem). The effect of a catch crop on the nutrients in the grain and straw of spring barley was associated with the soil type. In Luvisol, a catch crop, independent of its management, increased the total N and P in the grain and straw of spring barley. In Phaeozem, a catch crop that was incorporated in the autumn significantly increased the K content in grain.


Nitrogen ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 110-127
Author(s):  
Jorge Federico Miranda-Vélez ◽  
Iris Vogeler

Catch crops are an effective method for reducing nitrogen (N) leaching in agriculture, but the mineralization of incorporated catch crop residue N is difficult to predict and model. We conducted a five-month incubation experiment using fresh residue from three catch crops (hairy vetch, fodder radish and ryegrass) with three temperature treatments (2 °C, 15 °C and 2–15 °C variable temperature) and two termination methods (glyphosate and untreated). Mineral N (ammonium and nitrate) in soil was quantified at 0, 1, 2, 4, 8 and 20 weeks of incubation. Ammonium accumulation from residue decomposition showed a lag at low and variable temperature, but subsequent nitrification of the ammonium did not. Mineral N accumulation over time changed from exponential to sigmoidal mode at low and variable temperature. Incubation temperature significantly affected mineralization rates in a first-order kinetics (FOK) model, while plant type and termination method did not. Plant type alone had a significant effect on the final mineralized fraction of added catch crop N. FOK models modified to accommodate an initial lag were fitted to the incubation results and produced better goodness-of-fit statistics than simple FOK. We suggest that initial lags in residue decomposition should be investigated for the benefit of mineralization predictions in cropping models.


Sign in / Sign up

Export Citation Format

Share Document