Nutrient Compositions of Cultured Thalassiosira rotula and Skeletonema costatum from Jiaozhou Bay

Author(s):  
Zhiliang Shen ◽  
Yulin Wu ◽  
Qun Liu ◽  
Yun Yao
Author(s):  
Hongli Qi ◽  
Yuping Xu ◽  
Xiaozhong Hu ◽  
Honggang Ma ◽  
Henglong Xu

Diatoms are a primary producer and play an important role in the functioning of microbial food webs. Temporal variations in community patterns of planktonic diatom assemblages were studied during a 1-year cycle (June 2007–May 2008) in Jiaozhou Bay, northern China. Samples were collected biweekly at a depth of 1 m from five sampling stations. A total of 75 diatom species representing 40 genera, 28 family, 19 orders and three classes were recorded. Of these species, 11 distributed in all four seasons, while 27, 35, 56 and 28 forms occurred only in spring, summer, autumn and winter season, respectively. The species number and total abundance peaked in autumn, with minimum values in May. All three species biodiversity measures (Shannon diversity, Pielou's evenness and Marglef's richness) peaked in spring and autumn. There was a significant difference in diatom community patterns among seasons, except the pair of spring and winter. The environmental variables, especially temperature and the nutrients, could significantly drive the seasonal variation in diatom community patterns. Of 11 dominant species, four (Paralia sulcata, Skeletonema costatum, Guinardia delicatulaandNitzschia lorenziana) were significantly related with temperature, pH and/or nutrients. These findings suggest that the seasonal shift in community pattern of planktonic diatoms was driven by both temperature and nutrients in this eutrophic basin ecosystem.


Author(s):  
Yong Jiang ◽  
Henglong Xu ◽  
Mingzhuang Zhu ◽  
Khaled A.S. Al-Rasheid

To analyse temporal distributions of microplankton populations and relationships to environmental conditions in marine ecosystems, a dataset of microplankton communities was investigated using a range of statistical methods. A total of 164 microplankton species comprising 100 microalgae and 64 ciliates were identified from 120 samples, respectively. Both planktonic microalga and ciliate assemblages showed temporal patterns and were significantly correlated between their temporal variations in abundance. The microplankton communities were characterized by 14 ciliates (e.g. Strombidium sulcatum, Tintinnopsis tubulosoides and Strombidium cheshiri) and 18 microalgae (e.g. Skeletonema costatum and Alexandrium tamarense). Multiple regression analyses showed that the interspecies correlations among these dominant species represented a complex network with a clear seasonal shift. Temporal pattern of microplankton communities was significantly correlated with the environmental variables such as temperature, salinity and nitrate nitrogen. The results suggest the clear species distribution and temporal dynamics of microplankton communities in response to environmental changes, and multivariate statistical approaches were a useful tool to reveal the species distribution patterns and complex microplanktonic interspecies correlations in marine ecosystems.


2005 ◽  
Vol 50 (1) ◽  
pp. 91-94 ◽  
Author(s):  
Dongyan Liu ◽  
Jun Sun ◽  
Jingzhong Zou ◽  
Jing Zhang

2010 ◽  
Vol 28 (6) ◽  
pp. 1131-1138 ◽  
Author(s):  
Shengjun Pan ◽  
Zhiliang Shen ◽  
Wenping Liu ◽  
Xiaotian Han ◽  
Hui Miao ◽  
...  

2011 ◽  
Vol 255-260 ◽  
pp. 2845-2849
Author(s):  
Jie Li ◽  
Yan Juan Liang ◽  
Guo Wei Zhang ◽  
Ze Hao Liu

Field evidence is presented showing that egg production rate and hatching success in the copepod Calanus sinicus were greatly modified during a major late-winter diatom blooms in the Jiaozhou Bay (Yellow Sea). The diatom species composition in this period had shifted to a dominance of Skeletonema costatum and Thalassiosira sp, and comprised about 65% of phytoplankton population among all six sampling stations. Calanus sinicus were examined to determine the effects of the diatom bloom on reproduction and recruitment. The results of egg production rate and hatching success were significantly decreased with the increase of chlorophyll a concentration, indicating that diatom bloom induced negative effect on the copepods population recruitment.


2020 ◽  
Vol 640 ◽  
pp. 79-105
Author(s):  
ET Porter ◽  
E Robins ◽  
S Davis ◽  
R Lacouture ◽  
JC Cornwell

Anthropogenic disturbances in the Chesapeake Bay (USA) have depleted eastern oyster Crassostrea virginica abundance and altered the estuary’s environment and water quality. Efforts to rehabilitate oyster populations are underway; however, the effect of oyster biodeposits on water quality and plankton community structure are not clear. In July 2017, we used 6 shear turbulence resuspension mesocosms (STURMs) to determine differences in plankton composition with and without the daily addition of oyster biodeposits to a muddy sediment bottom. STURM systems had a volume-weighted root mean square turbulent velocity of 1.08 cm s-1, energy dissipation rate of ~0.08 cm2 s-3, and bottom shear stress of ~0.36-0.51 Pa during mixing-on periods during 4 wk of tidal resuspension. Phytoplankton increased their chlorophyll a content in their cells in response to low light in tanks with biodeposits. The diatom Skeletonema costatum bloomed and had significantly longer chains in tanks without biodeposits. These tanks also had significantly lower concentrations of total suspended solids, zooplankton carbon, and nitrite +nitrate, and higher phytoplankton carbon concentrations. Results suggest that the absence of biodeposit resuspension initiates nitrogen uptake for diatom reproduction, increasing the cell densities of S. costatum. The low abundance of the zooplankton population in non-biodeposit tanks suggests an inability of zooplankton to graze on S. costatum and negative effects of S. costatum on zooplankton. A high abundance of the copepod Acartia tonsa in biodeposit tanks may have reduced S. costatum chain length. Oyster biodeposit addition and resuspension efficiently transferred phytoplankton carbon to zooplankton carbon, thus supporting the food web in the estuary.


Author(s):  
Alexander S. Lelekov ◽  
Rudolf P. Trenkenshu

The paper presents an example of the linear splines use to describe the photosynthesis light curves for microalgae culture. The main mathematical models of the relationship between photosynthesis rate and light are listed. Based on the previously formulated basic principles of modeling microalgae photobiosynthesis, a mathematical model is proposed that describes the dependence of the assimilation number of chlorophyll a on the value of the light flux by linear splines. The advantage of the proposed approach is a clear definition of the point of change of the limiting factor. It is shown that light-limited photosynthesis rate is determined not only by external irradiation, but also by the concentration of chlorophyll a. The light-saturated rate depends on the amount of a key enzyme complex, which limits the rate of energy exchange reactions in the cell. Verification of the proposed model on the example of the diatom microalgae Skeletonema costatum was carried out. It is shown that the higher the degree of cell adaptation to high irradiation, the better the photosynthesis curve is described by linear splines. If S. costatum cells are adapted to low irradiation, deviations of experimental data from the idealized broken line are observed, which are caused by changes in the pigment composition. When the experimental data are normalized, the cell adaptation factor is reduced, all points are described by a single broken line, which indicates the universality of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document