external cost
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 24)

H-INDEX

13
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3463
Author(s):  
Xueliang Yuan ◽  
Leping Chen ◽  
Xuerou Sheng ◽  
Mengyue Liu ◽  
Yue Xu ◽  
...  

Economic cost is decisive for the development of different power generation. Life cycle cost (LCC) is a useful tool in calculating the cost at all life stages of electricity generation. This study improves the levelized cost of electricity (LCOE) model as the LCC calculation methods from three aspects, including considering the quantification of external cost, expanding the compositions of internal cost, and discounting power generation. The improved LCOE model is applied to three representative kinds of power generation, namely, coal-fired, biomass, and wind power in China, in the base year 2015. The external cost is quantified based on the ReCiPe model and an economic value conversion factor system. Results show that the internal cost of coal-fired, biomass, and wind power are 0.049, 0.098, and 0.081 USD/kWh, separately. With the quantification of external cost, the LCCs of the three are 0.275, 0.249, and 0.081 USD/kWh, respectively. Sensitivity analysis is conducted on the discount rate and five cost factors, namely, the capital cost, raw material cost, operational and maintenance cost (O&M cost), other annual costs, and external costs. The results provide a quantitative reference for decision makings of electricity production and consumption.


Author(s):  
Nahry Nahry ◽  
Talitha Ayu

The development of e-commerce business in Jakarta, Indonesia, in recent years has made the Last Mile Delivery (LMD) business sector develop rapidly. Increased demand for LMD makes the resulting kilometer trips even greater, resulting in negative externalities. On the other hand, logistics costs in Indonesia are only affected by vehicle operating costs and no external cost component. Optimization of LMD services that takes into account internal and external costs is needed to minimize the total cost of LMD and in reducing the impact of negative externalities. The purpose of this paper is to optimize the LMD distribution system on the Heterogeneous Fleet Vehicle Routing Problem with Time Window and External Costs (HFVRPTW-EC) models. The optimization is done by applying the HFVRPTW-EC model using data from one of the parcel delivery companies in Jakarta and then doing a simulation by forming several operational scenarios. The results show that the optimization of LMD has reduced internal and external costs by more than 50% compared to existing conditions. The detailed results show that, for the short-term program, a scenario with a one-tier distribution system and type of motorcycle vehicle can reduce total costs compared to existing conditions by 66.22% on peak day and 59.41% on off peak day. Whereas for long-term program optimization, scenarios with multiple tier distribution systems and types of motorized vehicles for drop mileage and pick up truck for stem mileage can reduce total costs by 69.23% on peak day and 60.24% on off peak day.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 447
Author(s):  
Selim Karkour ◽  
Tomohiko Ihara ◽  
Tadahiro Kuwayama ◽  
Kazuki Yamaguchi ◽  
Norihiro Itsubo

The global demand for air conditioners (ACs) has more than tripled since 1990, with 1.6 billion units currently in use. With the rapid economic and population growth of countries located in the hottest parts in the world, this trend is likely to continue in the future. The aim of this study was to show the benefits of introducing air conditioners with different materials or different technologies such as inverters with high energy-saving performance on the environment and human health in Indonesia. To evaluate the environmental impacts of the different technologies, a cradle-to-grave life cycle assessment (LCA) of air conditioners was conducted using the life-cycle impact assessment method based on endpoint modeling (LIME3). As expected, the use stage has the largest global warming potential (GWP), representing more than 90% of the impact, whereas copper and nickel have the most important impact in terms of resource consumption (about 50%). We found that the impacts are heavily dependent on the country’s energy mix, but reduction can be achieved by introducing better technologies. The integration factors from LIME3 were then applied to estimate the external cost of each model; the results showed that the use stage also has the most influence. Even though the impact of climate change is important, air pollution impact must be seriously considered as its impact was found to be the highest (about 60% of the total impact). The external cost was finally compared to the possible benefits produced by the introduction of air conditioning technologies during their 10-year life cycle. We found that the impacts are twice that of the benefit for the best model (USD 2003 vs. 1064); however, the novelty of this study is that the benefit was also considered. In the future, developing countries should promote AC models with inverters, refrigerants with low global warming impact such as natural refrigerants, and encourage the recycling of units as soon as possible. The energy mix for electricity production is also a key parameter to consider.


2021 ◽  
Vol 261 ◽  
pp. 03029
Author(s):  
Xiaomei Xuan

The purpose of this paper is to calculate the external noise cost of China’s high-speed railway and forecast its future trend. Firstly, the unit value transfer method after correction is selected as a method of calculation. Secondly, the noise cost calculation model of China’s high-speed railway is established by introducing the correction factors such as GDP-PPP, population density ratio and CPI ratio. At last, the external noise cost since the opening of high-speed railway is calculated. The model validation results show that although the average external noise cost of high-speed railway increases year by year, it does not increase significantly. This is not only related to economic growth and improvement of noise reduction technology, but also related to the increase of investment in noise reduction facilities in the early stage. Compared with it, the total external cost of high-speed railway noise increases obviously, which is positively related to the rapid development of high-speed railway. With the increase of high-speed railway mileage and passenger turnover, the total noise cost increases significantly. It can be predicted that with the implementation of high-speed railway planning in the future, the negative external cost of noise will continue to increase.


2020 ◽  
Vol 12 (23) ◽  
pp. 9983
Author(s):  
Joost Hintjens ◽  
Edwin van Hassel ◽  
Thierry Vanelslander ◽  
Eddy Van de Voorde

The present paper studies the bundling of road cargo flows of neighbouring seaports to a common hinterland. In specific cases, some hinterland flows can be too small to make bundling in a sufficient frequency possible. By combining the road freight flows of neighbouring ports, this problem can be solved. However, the additional cost of bundling and the loss of time need to be compensated for by a lower transport cost. The paper presents an empirical model for the 104 core Trans-European Transport Network (TEN-T) ports of the European Union (EU) and their 271 NUTS2 (Nomenclature of Territorial Units for Statistics) hinterland regions that allows identifying opportunities for bundling as well as the direct and external cost effects. By including the value of time (VOT) of each transport mode, the generalised cost is also calculated. The result is a business model that helps port authorities, and other port actors, to identify bundling projects that will lower the direct, generalised and external costs of the hinterland connectivity, thus increasing the port attractiveness for port users as well as lowering potential aversion by the surrounding community to port operations that create hinterland nuisance.


Sign in / Sign up

Export Citation Format

Share Document