Steady Current

Author(s):  
Teruo Matsushita
Keyword(s):  
Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 419
Author(s):  
Congzheng Qi ◽  
Zemin Ding ◽  
Lingen Chen ◽  
Yanlin Ge ◽  
Huijun Feng

Based on finite time thermodynamics, an irreversible combined thermal Brownian heat engine model is established in this paper. The model consists of two thermal Brownian heat engines which are operating in tandem with thermal contact with three heat reservoirs. The rates of heat transfer are finite between the heat engine and the reservoir. Considering the heat leakage and the losses caused by kinetic energy change of particles, the formulas of steady current, power output and efficiency are derived. The power output and efficiency of combined heat engine are smaller than that of single heat engine operating between reservoirs with same temperatures. When the potential filed is free from external load, the effects of asymmetry of the potential, barrier height and heat leakage on the performance of the combined heat engine are analyzed. When the potential field is free from external load, the effects of basic design parameters on the performance of the combined heat engine are analyzed. The optimal power and efficiency are obtained by optimizing the barrier heights of two heat engines. The optimal working regions are obtained. There is optimal temperature ratio which maximize the overall power output or efficiency. When the potential filed is subjected to external load, effect of external load is analyzed. The steady current decreases versus external load; the power output and efficiency are monotonically increasing versus external load.


1993 ◽  
Vol 175 (3-4) ◽  
pp. 261-264 ◽  
Author(s):  
Ashok K Singal

2021 ◽  
Vol 13 (13) ◽  
pp. 2462
Author(s):  
Stanislav A. Ermakov ◽  
Irina A. Sergievskaya ◽  
Ivan A. Kapustin

Strong variability of Ka-band radar backscattering from short wind waves on the surface of water covered with surfactant films in the presence of internal waves (IW) was studied in wave tank experiments. It has been demonstrated that modulation of Ka-band radar return due to IW strongly depends on the relationship between the phase velocity of IW and the velocity of drifting surfactant films. An effect of the strong increase in surfactant concentration was revealed in convergent zones, associated with IW orbital velocities in the presence of a “resonance” surface steady current, the velocity of which was close to the IW phase velocity. A phenomenological model of suppression and modulations in the spectrum of small-scale wind waves due to films and IW was elaborated. It has been shown that backscatter modulation could not be explained by the modulation of free (linear) millimeter-scale Bragg waves, but was associated with the modulation of bound (parasitic) capillary ripples generated by longer, cm–dm-scale waves—a “cascade” modulation mechanism. Theoretical analysis based on the developed model was found to be consistent with experiments. Field observations which qualitatively illustrated the effect of strong modulation of Ka-band radar backscatter due to IW in the presence of resonance drift of surfactant films are presented.


1991 ◽  
Vol 28 (1) ◽  
pp. 62-73 ◽  
Author(s):  
K. Y. Lo ◽  
I. I. Inculet ◽  
K. S. Ho

A comprehensive experimental investigation on the electroosmotic strengthening of soft sensitive clay was performed to assess the effectiveness of the treatment and to study the mechanism of the process. A specially designed electroosmotic cell was developed to prevent gas accumulation near the electrodes, to allow better electrode-soil contact, and to improve the treatment efficiency. This apparatus also enables the monitoring of the generated negative pore-water pressure along the sample length, settlement, voltage distribution, and current variation during treatment. The investigation covered two different types of soil trimmed at different orientations: the vertically and horizontally trimmed overconsolidated Wallaceburg clay and the vertically trimmed slightly overconsolidated soft sensitive Gloucester (Leda) clay. Results of this study showed that the voltage distribution and induced negative pore pressure at equilibrium along the sample are linear with steady current flow across the sample, indicating that the electrode design in the electroosmosis test apparatus is efficient. The electroosmotic consolidation curve is similar to that of the conventional consolidation curve, and the preconsolidation pressure was increased by 51–88% with an applied voltage up to 6 V. The undrained shear strength increased to a maximum of 172%, and the moisture content decreased by 30%. The technique of electrode reversal is employed, and a relatively uniform strength increase between the electrodes is observed. Key words: electroosmosis, electroosmotic cell, soft sensitive clay, negative pore-water pressure, preconsolidation pressure, stress–strain behaviour.


2021 ◽  
Vol 235 ◽  
pp. 109359
Author(s):  
Qi Yang ◽  
Peng Yu ◽  
Hongjun Liu

2009 ◽  
Vol 15 (3) ◽  
pp. 304-315 ◽  
Author(s):  
Ioan Bica
Keyword(s):  

It has been shown that in an m.h.d. generator, acoustic waves can grow due to the coupling of fluctuations in electrical conductivity, Hall parameter and thermodynamic properties of the gas, with the ohmic dissipation and electromagnetic body forces. A new analysis of this phenomenon is presented in which waves travelling at an arbitrary angle to the flow direction in a plane perpendicular to the magnetic field are considered. In contrast to McCune’s (1964) treatment the thermodynamic properties are not restricted to perfect gas laws; and the condition for spatially and temporally growing waves is examined using a general dispersion relation which includes both these types of wave. We consider in detail (i) stationary waves in supersonic flow, and (ii) travelling waves in the subsonic flow found in the G.E.G.B. 200 MW thermal input generator being built at Marchwood, and a possible power station m.h.d. generator. It is found that the waves in the 200 MW rig which burns kerosene in oxygen will be damped. But in an oil-air combustion products generator for Hall parameters of order 3 or greater, it is found that stationary waves which grow rapidly may occur at Mach numbers greater than about 1-7; and in subsonic flow waves propagating antiparallel to the steady current vector may be amplified, though the growth rate is not excessive. In noble gas m.h.d. generators these waves are more unstable than in the oil, air combustion products generator.


2005 ◽  
Vol 18 (3) ◽  
pp. 275-289 ◽  
Author(s):  
J. A. Hernandes ◽  
E. Capelas de Oliveira ◽  
A. K. T. Assis

Sign in / Sign up

Export Citation Format

Share Document