scholarly journals Examination of Volcanic Activity: AUV and Submersible Observations of Fine-Scale Lava Flow Distributions Along the Southern Mariana Trough Spreading Axis

Author(s):  
Miho Asada ◽  
Shuro Yoshikawa ◽  
Nobutatsu Mochizuki ◽  
Yoshifumi Nogi ◽  
Kyoko Okino
2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Hiroya Nitta ◽  
Takeshi Saito ◽  
Yorinao Shitaoka

Abstract Reconstruction of the eruption history of an active volcano is necessary to elucidate its volcanic activity and to assess the probability of its volcanic eruption. Yokodake volcano in central Japan is the only active volcano among the Yatsugatake volcano group. It has effused nine lava flows, most of which have not been dated. For this study, we ascertained the eruption ages of the latest lava (Y9) and second most recent lava (Y8) using radiocarbon (14C), thermoluminescence (TL), and paleomagnetic dating methods. Results revealed the eruption ages of the two lava flows and the recent eruption history of Yokodake volcano. Yokodake volcano effused its Y8 lava flow at ca. 3.4 ka, ejected NYk-2 tephra with explosive eruption at ca. 2.4–2.2 ka, and effused the Y9 lava flow associated with Y9-T tephra at ca. 0.6 ka. Magma eruption rates of Yokodake at 34 ky and 3.4 ky were estimated as about 9 × 10−3 km3/ky and 1 × 10−2 km3/ky, indicating a stable eruption rate maintained during the past 34 ky. This result suggests that Yokodake volcano retains some potential for eruption, although the volcanic activity of the Yatsugatake volcanoes (10−1–10−2 km3/ky) has weakened over time.


2021 ◽  
Author(s):  
Sylvain Breton ◽  
Lu Pan ◽  
Cathy Quantin-Nataf ◽  
Clément Brustel ◽  
Jessica Flahaut

<p>Impact craters are often used to date planetary surfaces, the density of crater increasing with the exposure age of the surface. However, some geologic event, such as lava flows, do not totally “reset” the crater clock. Indeed, larger craters, rather than being totally recovered by the lava flow will be only partially filled.</p><p>In that case, the crater size frequency distribution differs from cratering models. In order to better describe crater populations, additional parameters can be included. To this purpose we build crater size and depth frequency distributions that offers a snapshot of the current degradation state of the population.</p><p>We used cratering models to interpret crater size and depth frequency distributions in terms of crater infilling rates. Using both global crater database and more local high resolution crater maps, we estimated crater obliteration rates on various Martian volcanic provinces.</p><p>Our method proven efficient to track activity of the main Martian volcanic provinces. Resurfacing rates reach several thousands of m/Gy. Pic activity differs from provinces. Syrtis and Hesperia are the oldest with the highest and oldest observed rates around 3.7 Gy. The activity of those provinces quickly decreases reaching few hundreds of m/Gy around 3.4 Gy. During Hesperian, Tharsis is the most active surface of Mars with high resurfacing until 3.3 Gy. Finally, our result shows an increase of resurfacing, reaching few hundreds of m/Gy in Amazonis planitia from 2 Gy to present.</p>


1992 ◽  
Vol 29 (11) ◽  
pp. 2425-2428 ◽  
Author(s):  
Gregory R. Brooks ◽  
Pierre A. Friele

The Ring Creek lava flow, extending from Opal Cone, generally is considered to be the youngest volcanic feature in the southern section of the Mount Garibaldi volcanic field, southwestern British Columbia. An in situ stump dated 10 650 ± 70 BP (Beta 43865) obtained from a raised delta partially overridden by the lava flow indicates that the lava was extruded after ca. 10.7 ka. At the Skookum Creek and Mamquam River confluence, sediments eroded from the Ring Creek lava flow form an alluvial fan that contains charcoal dated 9360 ± 160 BP (Beta 38914), which indicates that the extrusion probably occurred before ca. 9.3 ka. Thus these radiocarbon ages bracket the age of the Ring Creek lava flow and indicate that volcanic activity in the southern section of the Mount Garibaldi volcanic field has been dormant since at least ca. 9.3 ka.


2020 ◽  
Author(s):  
Federico Di Traglia ◽  
Alessandro Fornaciai ◽  
Massimiliano Favalli ◽  
Teresa Nolesini ◽  
Nicola Casagli

<p>Steep volcano flanks are geomorphological systems highly responsive to both exogenous dynamics and endogenous forcing. While the external (gravitational) processes lead to a shift of material from steeper slopes to areas with lower gradients (erosion of loose deposits, rockfall of lavas/welded material), magmatic and tectonic activity can have either a constructional (accumulation) or a destructive effect (triggering moderate- to large-scale mass-wasting). Remotely sensed data have often been used to map areas affected by lithological and morphological changes, i.e. to identify areas impacted by eruptive and post-eruptive (landslides or floods) phenomena, as well as to quantify topographic changes.</p><p>In this work, the geomorphological evolution of the Sciara del Fuoco (SdF) depression on the Island of Stromboli (Italy) between July 2010 and October 2019 has been reconstructed by using multi-temporal, multi-platform remote sensing data. Digital elevation models (DEMs) from PLEIADES-1 tri-stereo images and from LiDAR acquisitions allowed the topographic changes estimation. Data comprised also high-spatial-resolution (QUICKBIRD) and moderate spatial resolution (SENTINEL-2) satellite images allowing to map areas affected by major lithological and morphological changes. SdF was selected being the optimal test-site for monitoring the effect of volcanic eruption on steep-slope volcano flank, since: i) it is affected by persistent volcanic activity, ii) it is prone to mass-wasting phenomena, and iii) it is one of the best studied and, among all, monitored volcano on Earth, providing exceptional validation data and ground-truth constrains.</p><p>During the analysed period, the volcano experienced two eruptions (summer 2014 and summer 2019), with the emplacement of two lava flow fields on the SdF. Before the 2014 effusion and in between the two eruptions, geomorphological changes consisted of volcanoclastic sedimentation and some overflows outside the crater. The effusive (and partially explosive) activity produced larger topographic changes, related to the emplacement of the two lava flow fields and to the accumulation of a volcaniclastic wedge on the SdF. This work shows that, at Stromboli, the emplacements of lava flow fields were preceded and accompanied by the accumulation of volcanoclastic wedges on the SdF. The quantification of these volcanoclastic wedges is relevant because they are composed of the same material that was involved in the 30 December 2002 tsunamigenic landslide, besides being located in the same area.</p><p>PLEIADES tri-stereo and LiDAR DEMs have been quantitatively and qualitatively compared, providing a first indication on the differences between two largely used methods for modelling topography. Although there are small artefacts in smaller ridges and valleys, there is still a clear consistency between the two DEMs for the main valleys and ridges. This analysis can be used by the volcanological community and the civil protection authorities in case of a cost-benefit analysis for planning the best method for updating topography and quantify morphological changes of an active volcano.</p>


2020 ◽  
Author(s):  
Teresa Nolesini ◽  
Federico Di Traglia ◽  
Francesco Casu ◽  
Claudio De Luca ◽  
Mariarosaria Manzo ◽  
...  

<p>On 3 July 2019, Stromboli experienced a paroxysmal explosion without long-term precursors, as instead occurred before the last two effusive eruptions. In the following months, lava outpoured from a vent localized in the SW crater area, and sporadically from the NE one. On 28 August 2019, a new paroxysmal explosion occurred, followed by strong volcanic activity, culminating with a lava flow emitted from the SW-Central crater area. Subsequently, the eruptive activity decreased, although frequent instability phenomena linked to the growth of new cones on the edge of the crater terrace occurred. This contribution summarizes the measurements obtained through space-borne and ground-based InSAR sensors. The ground-based data allowed to detect pressurization of the summit area, as the instability of the newly emplaced material. The satellite data instead helped to identify the slope dynamics. The integration of the complementary systems strengthens the monitoring of both the eruptive activity and the instability phenomena.</p><p>This work is supported by the 2019-2021 Università di Firenze and Italian Civil Protection Department agreement, and by the 2019-2021 IREA-CNR and Italian Civil Protection Department agreement.</p>


Author(s):  
Russell L. Steere

Complementary replicas have revealed the fact that the two common faces observed in electron micrographs of freeze-fracture and freeze-etch specimens are complementary to each other and are thus the new faces of a split membrane rather than the original inner and outer surfaces (1, 2 and personal observations). The big question raised by published electron micrographs is why do we not see depressions in the complementary face opposite membrane-associated particles? Reports have appeared indicating that some depressions do appear but complementarity on such a fine scale has yet to be shown.Dog cardiac muscle was perfused with glutaraldehyde, washed in distilled water, then transferred to 30% glycerol (material furnished by Dr. Joaquim Sommer, Duke Univ., and VA Hospital, Durham, N.C.). Small strips were freeze-fractured in a Denton Vacuum DFE-2 Freeze-Etch Unit with complementary replica tooling. Replicas were cleaned in chromic acid cleaning solution, then washed in 4 changes of distilled water and mounted on opposite sides of the center wire of a Formvar-coated grid.


Sign in / Sign up

Export Citation Format

Share Document