Regeneration of 11-cis-Retinal in Visual Systems with Monostable and Bistable Visual Pigments

2014 ◽  
pp. 47-71
Author(s):  
John C. Saari
1968 ◽  
Vol 51 (2) ◽  
pp. 125-156 ◽  
Author(s):  
George Wald

Extraction of two visual pigments from crayfish eyes prompted an electrophysiological examination of the role of visual pigments in the compound eyes of six arthropods. The intact animals were used; in crayfishes isolated eyestalks also. Thresholds were measured in terms of the absolute or relative numbers of photons per flash at various wavelengths needed to evoke a constant amplitude of electroretinogram, usually 50 µv. Two species of crayfish, as well as the green crab, possess blue- and red-sensitive receptors apparently arranged for color discrimination. In the northern crayfish, Orconectes virilis, the spectral sensitivity of the dark-adapted eye is maximal at about 550 mµ, and on adaptation to bright red or blue lights breaks into two functions with λmax respectively at about 435 and 565 mµ, apparently emanating from different receptors. The swamp crayfish, Procambarus clarkii, displays a maximum sensitivity when dark-adapted at about 570 mµ, that breaks on color adaptation into blue- and red-sensitive functions with λmax about 450 and 575 mµ, again involving different receptors. Similarly the green crab, Carcinides maenas, presents a dark-adapted sensitivity maximal at about 510 mµ that divides on color adaptation into sensitivity curves maximal near 425 and 565 mµ. Each of these organisms thus possesses an apparatus adequate for at least two-color vision, resembling that of human green-blinds (deuteranopes). The visual pigments of the red-sensitive systems have been extracted from the crayfish eyes. The horse-shoe crab, Limulus, and the lobster each possesses a single visual system, with λmax respectively at 520 and 525 mµ. Each of these is invariant with color adaptation. In each case the visual pigment had already been identified in extracts. The spider crab, Libinia emarginata, presents another variation. It possesses two visual systems apparently differentiated, not for color discrimination but for use in dim and bright light, like vertebrate rods and cones. The spectral sensitivity of the dark-adapted eye is maximal at about 490 mµ and on light adaptation, whether to blue, red, or white light, is displaced toward shorter wavelengths in what is essentially a reverse Purkinje shift. In all these animals dark adaptation appears to involve two phases: a rapid, hyperbolic fall of log threshold associated probably with visual pigment regeneration, followed by a slow, almost linear fall of log threshold that may be associated with pigment migration.


Author(s):  
Thomas W. Cronin ◽  
Sönke Johnsen ◽  
N. Justin Marshall ◽  
Eric J. Warrant

This chapter focuses on visual pigments and photoreceptors. In living things, photoreception inevitably begins with a photochemical event—a molecule intercepts a photon of light and is somehow changed. Various molecules, generally known as photopigments, perform this function in animals and plants. The molecules involved in vision are called visual pigments. In all animals, vision ultimately depends on a single family of proteins that all have descended from one common ancestor—these are the opsins. The chapter cites the hydrothermal vent crab as a good example of how changes of visual pigments appearing in various developmental states reflect ecological adaptation. The animal's life stages require visual systems sampling opposite ends of the visual spectrum.


2020 ◽  
Vol 117 (16) ◽  
pp. 8948-8957 ◽  
Author(s):  
Megan L. Porter ◽  
Hiroko Awata ◽  
Michael J. Bok ◽  
Thomas W. Cronin

Stomatopod crustaceans possess some of the most complex animal visual systems, including at least 16 spectrally distinct types of photoreceptive units (e.g., assemblages of photoreceptor cells). Here we fully characterize the set of opsin genes expressed in retinal tissues and determine expression patterns of each in the stomatopod Neogonodactylus oerstedii. Using a combination of transcriptome and RACE sequencing, we identified 33 opsin transcripts expressed in each N. oerstedii eye, which are predicted to form 20 long-wavelength–sensitive, 10 middle-wavelength–sensitive, and three UV-sensitive visual pigments. Observed expression patterns of these 33 transcripts were highly unusual in five respects: 1) All long-wavelength and short/middle-wavelength photoreceptive units expressed multiple opsins, while UV photoreceptor cells expressed single opsins; 2) most of the long-wavelength photoreceptive units expressed at least one middle-wavelength–sensitive opsin transcript; 3) the photoreceptors involved in spatial, motion, and polarization vision expressed more transcripts than those involved in color vision; 4) there is a unique opsin transcript that is expressed in all eight of the photoreceptive units devoted to color vision; and 5) expression patterns in the peripheral hemispheres of the eyes suggest visual specializations not previously recognized in stomatopods. Elucidating the expression patterns of all opsin transcripts expressed in the N. oerstedii retina reveals the potential for previously undocumented functional diversity in the already complex stomatopod eye and is a first step toward understanding the functional significance of the unusual abundance of opsins found in many arthropod species’ visual systems.


2021 ◽  
Author(s):  
Ryan K Schott ◽  
Leah Perez ◽  
Matthew A Kwiatkowski ◽  
Vance Imhoff ◽  
Jennifer M Gumm

Among major vertebrate groups, anurans (frogs and toads) are understudied with regards to their visual systems and little is known about variation among species that differ in ecology. We sampled North American anurans representing diverse evolutionary and life histories that likely possess visual systems adapted to meet different ecological needs. Using standard molecular techniques, visual opsin genes, which encode the protein component of visual pigments, were obtained from anuran retinas. Additionally, we extracted the visual opsins from publicly available genome and transcriptome assemblies, further increasing the phylogenetic and ecological diversity of our dataset. We found that anurans consistently express four visual opsin genes (RH1, LWS, SWS1, and SWS2, but not RH2) even though reported photoreceptor complements vary widely among species. We found the first evidence of visual opsin duplication in an amphibian with the duplication of the LWS gene in the African bullfrog, which had distinct LWS copies on the sex chromosomes. The proteins encoded by these genes showed considerable sequence variation among species, including at sites known to shift the spectral sensitivity of visual pigments in other vertebrates and thus mediate dim-light and color vision. Using molecular evolutionary analyses of selection (dN/dS) we found significant evidence for positive selection at a subset of sites in the dim-light rod opsin gene RH1 and the long wavelength sensitive cone opsin gene LWS. The function of sites inferred to be under positive selection are largely unknown, but a few are likely to affect spectral sensitivity and other visual pigment functions based on proximity to previously identified sites in other vertebrates. The observed variation cannot fully be explained by evolutionary relationships among species alone. Taken together, our results suggest that other ecological factors, such as habitat and life history, as well as behaviour, may be driving changes to anuran visual systems.


1991 ◽  
Vol 36 (1) ◽  
pp. 82-82
Author(s):  
No authorship indicated

2009 ◽  
Vol 129 (4) ◽  
pp. 639-645
Author(s):  
Koji Murai ◽  
Tadatsugi Okazaki ◽  
Yuji Hayashi
Keyword(s):  

Author(s):  
Jonathan Weinel

This chapter explores altered states of consciousness in interactive video games and virtual reality applications. First, a brief overview of advances in the sound and graphics of video games is provided, which has led to ever-more immersive capabilities within the medium. Following this, a variety of games that represent states of intoxication, drug use, and hallucinations are discussed, in order to reveal how these states are portrayed with the aid of sound and music, and for what purpose. An alternative trajectory in games is also explored, as various synaesthetic titles are reviewed, which provide high-adrenaline experiences for ravers, and simulate dreams, meditation, or psychedelic states. Through the analysis of these, and building upon the previous chapters of Inner Sound, this chapter presents a conceptual model for ‘Altered States of Consciousness Simulations’: interactive audio-visual systems that represent altered states with regards to the sensory components of the experience.


Sign in / Sign up

Export Citation Format

Share Document