Developmental Genetics and the Diversity of Animal Form: Hox Genes in Arthropods

2000 ◽  
pp. 195-208 ◽  
Author(s):  
Michael Akam
2021 ◽  
Author(s):  
Christopher J Gonzalez ◽  
Tobias R Hildebrandt ◽  
Brigid C O'Donnell

Abstract Background: Hox genes are key regulators of appendage development in the insect body plan. The body plan of Mayfly (Ephemeroptera) nymphs differs due to the presence of evolutionarily significant abdominal appendages called gills. Despite mayflies’ basal phylogenetic position and novel morphology amongst insects, little is known of their developmental genetics. Here we present an annotated transcriptome for the mayfly Hexagenia limbata, with annotated sequences for putative Hox peptides and embryonic expression profiles for the Hox genes Antp and Ubx/abd-A. Results: Transcriptomic sequencing of early instar H. limbata nymphs yielded a high-quality assembly of 83,795 contigs, of which 22,975 were annotated against Folsomia candida, Nilaparvata lugens, Zootermopsis nevadensis and UniRef90 protein databases. Peptide annotations included eight of the ten canonical Hox genes (lab, pb, Dfd, Scr, Antp, Ubx, abd-A and Abd-B), most of which contained all functional domains and motifs conserved in insects. Expression patterns of Antp and Ubx/abd-A in H. limbata were visualized from early to late embryogenesis, and are also highly conserved with patterns reported for other non-holometabolous insects.Conclusions: We present evidence that both H. limbata Hox peptide sequences and embryonic expression patterns for Antp and Ubx/abd-A are extensively conserved with other insects. These findings suggest mayfly Antp and Ubx/abd-A play similar appendage promoting and repressing roles in the thorax and abdomen, respectively. The identified expression of Ubx and abd-A in early instar nymphs further suggests that mayfly gill development is not subject to Ubx or abd-A repression. Previous studies have shown that insect Ubx and abd-A repress appendages by inhibiting their distal structures, which can permit the development of proximal appendage types. In line with past morphology-based work, we propose that mayfly gills are proximal appendage structures, possibly homologous to the proximal appendage structures of crustaceans.


2021 ◽  
Author(s):  
Guilherme Gainett ◽  
Vanessa L. González ◽  
Jesús A. Ballesteros ◽  
Emily V. W. Setton ◽  
Caitlin M. Baker ◽  
...  

AbstractChelicerates exhibit dynamic evolution of genome architecture, with multiple whole genome duplication events affecting groups like spiders, scorpions, and horseshoe crabs. Yet, genomes remain unavailable for several chelicerate orders, such as Opiliones (harvestmen), which has hindered comparative genomics and developmental genetics across arachnids. We assembled a draft genome of the daddy-long-legs Phalangium opilio, which revealed no signal of whole genome duplication. To test the hypothesis that single-copy Hox genes of the harvestman exhibit broader functions than subfunctionalized spider paralogs, we performed RNA interference against Deformed in P. opilio. Knockdown of Deformed incurred homeotic transformation of the two anterior pairs of walking legs into pedipalpal identity; by comparison, knockdown of the spatially restricted paralog Deformed-A in the spider affects only the first walking leg. To investigate the genetic basis for leg elongation and tarsomere patterning, we identified and interrogated the function of an Epidermal growth factor receptor (Egfr) homolog. Knockdown of Egfr incurred shortened appendages and the loss of distal leg structures. The overlapping phenotypic spectra of Egfr knockdown experiments in the harvestman and multiple insect models are striking because tarsomeres have evolved independently in these groups. Our results suggest a conserved role for Egfr in patterning distal leg structures across arthropods, as well as cooption of EGFR signaling in tarsomere patterning in both insects and arachnids. The establishment of genomic resources for P. opilio, together with functional investigations of appendage fate specification and distal patterning mechanisms, are key steps in understanding how daddy-long-legs make their long legs.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi163-vi164
Author(s):  
Yasin Mamatjan ◽  
Severa Bunda ◽  
Fabio Moraes ◽  
Suganth Suppiah ◽  
Pardeep Heir ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document