Response of Arterial Wall to Hypertension and Residual Stress

Biomechanics ◽  
1996 ◽  
pp. 93-119 ◽  
Author(s):  
Takeo Matsumoto ◽  
Kozaburo Hayashi
2018 ◽  
Vol 57 ◽  
pp. 52-63
Author(s):  
Krzysztof Cieslicki ◽  
Adam Piechna ◽  
Wiktor Gambin

Volume 2 ◽  
2004 ◽  
Author(s):  
Nooshin Haghighipour ◽  
Mohammad Tafazzoli Shadpour ◽  
Albert Avolio

Stress distribution of the arterial wall is an important factor in biomechanics of arteries. It has been suggested that excessive stress leads to arterial degeneration and lesion formation. In addition to circumferential tensile stress caused by luminal pressure, arterial wall contains circumferential residual stress with compressive and tensile components with maximum values on intima and adventitia respectively. The compressive residual stress component compensates part of maximum tensile stress, and therefore decreases severity of tension on endothelial lining. If an arterial ring is cut in radial direction it opens. The degree of opening angle is a determinant of circumferential residual stress. In this investigation, Finite element modeling was used to evaluate circumferential residual stress in a typical model of cross section of human aorta with differing opening angle and Young’s modulus of elasticity. Results show that residual stress values are influenced by structural and mechanical parameters. Elevation of the opening angle and stiffening of the arterial wall resulted in increase of residual stress level.


Author(s):  
Massimo Pocaterra ◽  
Hao Gao ◽  
Saroj Das ◽  
Michele Pinelli ◽  
Quan Long

Residual stresses are present in a variety of biological tissues, such as the arteries [1]. It is believed that residual stress tends to make stress distribution more uniform throughout normal arterial wall [2]. However, the influence of residual stress in a diseased artery remains unclear. The aim of this study is to investigate the circumferential residual stress in a diseased carotid artery (atherosclerotic plaque) and its influence on the stress distribution under normal blood pressure loading. To achieve a more realistic stress analysis, an anisotropic non-linear material properties based on ANSYS™ framework with parameter constants, obtained according to Gasser et al [3], was used for all simulations in the study.


2010 ◽  
Vol 34 (7-8) ◽  
pp. 422-428 ◽  
Author(s):  
Nooshin Haghighipour ◽  
Mohammad Tafazzoli-Shadpour ◽  
Albert Avolio

2013 ◽  
Vol 80 (4) ◽  
Author(s):  
Keiichi Takamizawa ◽  
Yasuhide Nakayama

In earlier studies on stress distribution in arteries, a monolayer wall model was often used. An arterial wall consists of three layers, the intima, the media, and the adventitia. The intima is mechanically negligible as a stress supporting layer against the blood pressure in young healthy vessels, although it is important as an interface between blood and arterial wall. The media and adventitia layers are considered to support blood pressure. Recently, residual strain and a constitutive law for porcine coronary arteries have been investigated in separated media and adventitia. Using the data obtained through these investigations, a stress analysis considering residual stress (strain) in each layer was performed in this study, and residual strain and stress were computed for a bilayer model. The circumferential residual stress was compressive in the inner region, tensile in the outer region, and had discontinuity at the boundary between the media and adventitia. A peak circumferential stress occurred in the media at the boundary between the media and adventitia under a physiological condition, and an almost flat distribution was obtained in the adventitia. This pattern does not change under a hypertensive condition. These results suggest that a remodeling with hypertension occurs in the media.


2003 ◽  
Vol 2003.52 (0) ◽  
pp. 151-152
Author(s):  
Takao FURUKAWA ◽  
Kazuaki NAGAYAMA ◽  
Takeo MATSUMOTO

2000 ◽  
Vol 122 (4) ◽  
pp. 454-456 ◽  
Author(s):  
S. J. Peterson ◽  
R. J. Okamoto

Quantifying the stress distribution through the arterial wall is essential to studies of arterial growth and disease. Previous studies have shown that both residual stress, as measured by opening angle, and differing material properties for the media-intima and the adventitial layers affect the transmural circumferential stress σθ distribution. Because a lack of comprehensive data on a single species and artery has led to combinations from multiple sources, this study determined the sensitivity of σθ to published variations in both opening angle and layer thickness data. We fit material properties to previously published experimental data for pressure–diameter relations and opening angles of rabbit carotid artery, and predicted σθ through the arterial wall at physiologic conditions. Using a one-layer model, the ratio of σθ at the internal wall to the mean σθ decreased from 2.34 to 0.98 as the opening angle increased from 60 to 130 deg. In a two-layer model using a 95 deg opening angle, mean σθ in the adventitia increased (112 percent for 25 percent adventitia) and mean σθ in the media decreased (47 percent for 25 percent adventitia). These results suggest that both residual stress and wall layers have important effects on transmural stress distribution. Thus, experimental measurements of loading curves, opening angles, and wall composition from the same species and artery are needed to accurately predict the transmural stress distribution in the arterial wall. [S0148-0731(00)02204-4]


Author(s):  
J. Fang ◽  
H. M. Chan ◽  
M. P. Harmer

It was Niihara et al. who first discovered that the fracture strength of Al2O3 can be increased by incorporating as little as 5 vol.% of nano-size SiC particles (>1000 MPa), and that the strength would be improved further by a simple annealing procedure (>1500 MPa). This discovery has stimulated intense interest on Al2O3/SiC nanocomposites. Recent indentation studies by Fang et al. have shown that residual stress relief was more difficult in the nanocomposite than in pure Al2O3. In the present work, TEM was employed to investigate the microscopic mechanism(s) for the difference in the residual stress recovery in these two materials.Bulk samples of hot-pressed single phase Al2O3, and Al2O3 containing 5 vol.% 0.15 μm SiC particles were simultaneously polished with 15 μm diamond compound. Each sample was cut into two pieces, one of which was subsequently annealed at 1300° for 2 hours in flowing argon. Disks of 3 mm in diameter were cut from bulk samples.


2021 ◽  
Vol 160 ◽  
pp. 107336
Author(s):  
Ziqian Zhang ◽  
Gang Shi ◽  
Xuesen Chen ◽  
Lijun Wang ◽  
Le Zhou

2006 ◽  
Vol 5 (1) ◽  
pp. 11-12
Author(s):  
Z KOBALAVA ◽  
V MOISEEV ◽  
Y KOTOVSKAYA ◽  
G KIYAKBAEV ◽  
E OZOVA

Sign in / Sign up

Export Citation Format

Share Document