Fos Protein Expression in Taste Neurons Following Electrical Stimulation of Afferent Nerves

1994 ◽  
pp. 410-411 ◽  
Author(s):  
Theresa A. Harrison ◽  
Nancy W. Miller
1980 ◽  
Vol 58 (5) ◽  
pp. 574-576 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

In 10 cats anaesthetized with chloralose the electrical activity of spontaneously active hypothalamic units was recorded for changes in discharge rate during electrical stimulation of renal afferent nerves. The discharge rate of 141 single units was altered by stimulation of either the ipsilateral or contralateral renal nerves. Most of the responsive units were located in the regions of lateral preoptic nucleus, lateral hypothalamus, and paraventricular nucleus. These results demonstrate that renal afferent nerves provide information to hypothalamic structures known to be involved in the regulation of arterial pressure and fluid balance.


2000 ◽  
Vol 279 (6) ◽  
pp. R2079-R2088 ◽  
Author(s):  
Hui Gong ◽  
Ronald Szymusiak ◽  
Janice King ◽  
Teresa Steininger ◽  
Dennis McGinty

Preoptic area (POA) neuronal activity promotes sleep, but the localization of critical sleep-active neurons is not completely known. Thermal stimulation of the POA also facilitates sleep. This study used the c-Fos protein immunostaining method to localize POA sleep-active neurons at control (22°C) and mildly elevated (31.5°C) ambient temperatures. At 22°C, after sleep, but not after waking, we found increased numbers of c-Fos immunoreactive neurons (IRNs) in both rostral and caudal parts of the median preoptic nucleus (MnPN) and in the ventrolateral preoptic area (VLPO). In animals sleeping at 31.5°C, significantly more Fos IRNs were found in the rostral MnPN compared with animals sleeping at 22°C. In VLPO, Fos IRN counts were no longer increased over waking levels after sleep at the elevated ambient temperature. Sleep-associated Fos IRNs were also found diffusely in the POA, but counts were lower than those made after waking. This study supports a hypothesis that the MnPN, as well as the VLPO, is part of the POA sleep-facilitating system and that the rostral MnPN may facilitate sleep, particularly at elevated ambient temperatures.


Neuroscience ◽  
1997 ◽  
Vol 81 (1) ◽  
pp. 93-112 ◽  
Author(s):  
V Sgambato ◽  
V Abo ◽  
M Rogard ◽  
M.J Besson ◽  
J.M Deniau

1997 ◽  
Vol 272 (3) ◽  
pp. R913-R923 ◽  
Author(s):  
H. Morita ◽  
Y. Yamashita ◽  
Y. Nishida ◽  
M. Tokuda ◽  
O. Hatase ◽  
...  

Responses of hepatic afferent nerves to intraportal bolus injection of hypertonic solutions were examined in anesthetized rats. Hepatic afferent nerve activity increased in response to an intraportal injection of 0.75 M NaCl or NaHCO3 but did not respond to a similar injection of 1.5 M mannitol, 0.75 M LiCl, or 0.15 M NaCl, implying that nerves in the hepatoportal area are sensitive to increases in Na concentrations and that this leads to stimulation of hepatic afferent nerve activity. To study central activation in response to stimulation of the hepatic Na-sensitive mechanism, c-fos induction was monitored. After electrical stimulation of hepatic afferent nerves, neurons containing Fos-like immunoreactivity (Fos-li) were found in the area postrema, nucleus of the solitary tract, paraventricular hypothalamic nucleus, and supraoptic nucleus at 90 min after stimulation. Induction of Fos-li was also studied after simultaneous infusion of 0.45 M NaCl into the portal vein and distilled water into the inferior vena cava in conscious rats so as to keep the total amount of solution introduced into the systemic circulation isotonic, thus avoiding changes in mean arterial pressure, plasma osmolality, and plasma NaCl concentrations. Fos-li-containing neurons were found in the same regions in which they were found after electrical stimulation. However, few, if any, Fos-li-containing cells were found if the rats were hepatically denervated or if they received an intraportal infusion of hypertonic LiCl or mannitol. These data provide evidence for involvement of the brain stem and forebrain structures in NaCl regulatory functions induced by stimulation of the hepatoportal Na-sensitive mechanism. However, stimulation of the hepatoportal osmosensitive mechanism does not activate these central structures.


Sign in / Sign up

Export Citation Format

Share Document