Study on the Application of Lagrangian Numerical Simulation to Fluid Dynamics in Sports Science

Author(s):  
Kyoji Kamemoto ◽  
Akira Ojima ◽  
Satoshi Ido ◽  
Toshiharu Arai
2006 ◽  
Vol 2006.2 (0) ◽  
pp. 129-130
Author(s):  
Akira OJIMA ◽  
Kyoji KAMEMOTO ◽  
Satoshi IDO ◽  
Toshiharu ARAI

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Krzysztof Wołosz ◽  
Jacek Wernik

AbstractThe paper presents the part of the investigation that has been carried out in order to develop the pneumatic pulsator which is to be employed as an unblocking device at lose material silo outlets. The part of numerical simulation is reported. The fluid dynamics issues have been outlined which are present during supersonic airflow thought the head of the pulsator. These issues describe the pneumatic impact phenomenon onto the loose material bed present in the silo to which walls the pulsator is assembled. The investigation presented in the paper are industrial applicable and the result is the working prototype of the industrial pneumatic pulsator. The numerical simulation has led to change the piston shape which is moving inside the head of the pulsator, and therefore, to reduce the pressure losses during the airflow. A stress analysis of the pulsator controller body has been carried out while the numerical simulation investigation part of the whole project. The analysis has made possible the change of the controller body material from cast iron to aluminium alloy.


Author(s):  
Mayank Rakesh ◽  
Paritosh Kumar Rakesh ◽  
Brajesh Kumar ◽  
Satajit Chowdhury ◽  
Atul Kumar Patidar

2014 ◽  
Vol 532 ◽  
pp. 545-548 ◽  
Author(s):  
Chao Yang ◽  
Shu Yuan Jiang ◽  
Hai Bo Bi

This paper simulate the mode of metal transfer in MIG magnetic control welding by using CFD software FLUENT, establishing mathematical model based on fluid dynamics and electromagnetic theory, and simulate the form, grow and drop process of metal transfer with and without magnetic. Meanwhile, do experiments to confirm the simulate result, and it is well consistent with the experimental result.


2013 ◽  
Vol 387 ◽  
pp. 180-184
Author(s):  
Ya Dong Li ◽  
Hai Hong Mo ◽  
Jun Shen Chen

The numerical simulation analysis on the whole process of the tube immersing is researched, which use computational fluid dynamics method, is based on RNG k~ε turbulence model. The analysis shows that: additional pressure of tube lateral wall depends on the changed flow field cause by tube immersing; through the analysis, it have explored the special position of additional pressure changes in the process of immersing; it also shows some problems should be paid attention, through analysis the stress of special position.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 31-37
Author(s):  
Shu Zhang ◽  
Wei Wang ◽  
Hong Sun ◽  
Dumitru Baleanu

This paper provided a numerical simulation of fluid dynamics in the chemical vapor reactor for nanoparticle synthesis. Standard k-? turbulence equation and eddy-dissipation model with standard wall function were used to investigate the reaction process of turbulent diffusion for alumina production. Here the tempera?ture and the operating conditions are discussed. Numerical results show that the model can well describe synthesis of nanometer alumina. The chemical reactions for alumina by this reactor are mainly concentrated in the range of 200 mm after the nozzle. The materials are completely mixed after 400 mm in the reactor.


Sign in / Sign up

Export Citation Format

Share Document