FPGA Synthesis of SIRM Fuzzy System-Classification of Diabetic Epilepsy Risk Levels from EEG Signal Parameters and CBF

Author(s):  
N. B. Balamurugan ◽  
M. Jothi ◽  
R. Harikumar
2021 ◽  
Vol 11 (5) ◽  
pp. 668
Author(s):  
Sani Saminu ◽  
Guizhi Xu ◽  
Zhang Shuai ◽  
Isselmou Abd El Kader ◽  
Adamu Halilu Jabire ◽  
...  

The benefits of early detection and classification of epileptic seizures in analysis, monitoring and diagnosis for the realization and actualization of computer-aided devices and recent internet of medical things (IoMT) devices can never be overemphasized. The success of these applications largely depends on the accuracy of the detection and classification techniques employed. Several methods have been investigated, proposed and developed over the years. This paper investigates various seizure detection algorithms and classifications in the last decade, including conventional techniques and recent deep learning algorithms. It also discusses epileptiform detection as one of the steps towards advanced diagnoses of disorders of consciousness (DOCs) and their understanding. A performance comparison was carried out on the different algorithms investigated, and their advantages and disadvantages were explored. From our survey, much attention has recently been paid to exploring the efficacy of deep learning algorithms in seizure detection and classification, which are employed in other areas such as image processing and classification. Hybrid deep learning has also been explored, with CNN-RNN being the most popular.


2012 ◽  
Vol 38 ◽  
pp. 391-404
Author(s):  
N.B. Balamurugan ◽  
M. Jothi ◽  
R. Harikumar
Keyword(s):  

2021 ◽  
Vol 20 ◽  
pp. 199-206
Author(s):  
Seda Postalcioglu

This study focused on the classification of EEG signal. The study aims to make a classification with fast response and high-performance rate. Thus, it could be possible for real-time control applications as Brain-Computer Interface (BCI) systems. The feature vector is created by Wavelet transform and statistical calculations. It is trained and tested with a neural network. The db4 wavelet is used in the study. Pwelch, skewness, kurtosis, band power, median, standard deviation, min, max, energy, entropy are used to make the wavelet coefficients meaningful. The performance is achieved as 99.414% with the running time of 0.0209 seconds


Sign in / Sign up

Export Citation Format

Share Document