Role of Calcium/Calmodulin in Plant Stress Response and Signaling

Author(s):  
Ritika Das ◽  
Amita Pandey ◽  
Girdhar K. Pandey
Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 454 ◽  
Author(s):  
Balaji Aravindhan Pandian ◽  
Rajendran Sathishraj ◽  
Maduraimuthu Djanaguiraman ◽  
P.V. Vara Prasad ◽  
Mithila Jugulam

Cytochrome P450s (CYPs) are the largest enzyme family involved in NADPH- and/or O2-dependent hydroxylation reactions across all the domains of life. In plants and animals, CYPs play a central role in the detoxification of xenobiotics. In addition to this function, CYPs act as versatile catalysts and play a crucial role in the biosynthesis of secondary metabolites, antioxidants, and phytohormones in higher plants. The molecular and biochemical processes catalyzed by CYPs have been well characterized, however, the relationship between the biochemical process catalyzed by CYPs and its effect on several plant functions was not well established. The advent of next-generation sequencing opened new avenues to unravel the involvement of CYPs in several plant functions such as plant stress response. The expression of several CYP genes are regulated in response to environmental stresses, and they also play a prominent role in the crosstalk between abiotic and biotic stress responses. CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses. The objective of this review is to summarize the latest research on the role of CYPs in plant stress response.


Author(s):  
Klára Kosová ◽  
Ilja Tom Prášil ◽  
Pavel Vítámvás

2013 ◽  
Vol 14 (4) ◽  
pp. 7370-7390 ◽  
Author(s):  
Min Wang ◽  
Qingsong Zheng ◽  
Qirong Shen ◽  
Shiwei Guo

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 472 ◽  
Author(s):  
Junhao Lu ◽  
Yang Xu ◽  
Juli Wang ◽  
Stacy D. Singer ◽  
Guanqun Chen

Vegetable oil is mainly composed of triacylglycerol (TAG), a storage lipid that serves as a major commodity for food and industrial purposes, as well as an alternative biofuel source. While TAG is typically not produced at significant levels in vegetative tissues, emerging evidence suggests that its accumulation in such tissues may provide one mechanism by which plants cope with abiotic stress. Different types of abiotic stress induce lipid remodeling through the action of specific lipases, which results in various alterations in membrane lipid composition. This response induces the formation of toxic lipid intermediates that cause membrane damage or cell death. However, increased levels of TAG under stress conditions are believed to function, at least in part, as a means of sequestering these toxic lipid intermediates. Moreover, the lipid droplets (LDs) in which TAG is enclosed also function as a subcellular factory to provide binding sites and substrates for the biosynthesis of bioactive compounds that protect against insects and fungi. Though our knowledge concerning the role of TAG in stress tolerance is expanding, many gaps in our understanding of the mechanisms driving these processes are still evident. In this review, we highlight progress that has been made to decipher the role of TAG in plant stress response, and we discuss possible ways in which this information could be utilized to improve crops in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Minggang Xiao ◽  
Zixuan Li ◽  
Li Zhu ◽  
Jiayi Wang ◽  
Bo Zhang ◽  
...  

Ascorbate (ASC) plays a critical role in plant stress response. The antioxidant role of ASC has been well-studied, but there are still several confusing questions about the function of ASC in plant abiotic stress response. ASC can scavenge reactive oxygen species (ROS) and should be helpful for plant stress tolerance. But in some cases, increasing ASC content impairs plant abiotic stress tolerance, whereas, inhibiting ASC synthesis or regeneration enhances plant stress tolerance. This confusing phenomenon indicates that ASC may have multiple roles in plant abiotic stress response not just as an antioxidant, though many studies more or less ignored other roles of ASC in plant. In fact, ACS also can act as the cofactor of some enzymes, which are involved in the synthesis, metabolism, and modification of a variety of substances, which has important effects on plant stress response. In addition, ASC can monitor and effectively regulate cell redox status. Therefore, we believe that ASC has atleast triple roles in plant abiotic stress response: as the antioxidant to scavenge accumulated ROS, as the cofactor to involve in plant metabolism, or as the regulator to coordinate the actions of various signal pathways under abiotic stress. The role of ASC in plant abiotic stress response is important and complex. The detail role of ASC in plant abiotic stress response should be analyzed according to specific physiological process in specific organ. In this review, we discuss the versatile roles of ASC in the response of plants to abiotic stresses.


2017 ◽  
Vol 114 (13) ◽  
pp. 3393-3396 ◽  
Author(s):  
Narangerel Altangerel ◽  
Gombojav O. Ariunbold ◽  
Connor Gorman ◽  
Masfer H. Alkahtani ◽  
Eli J. Borrego ◽  
...  

Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.


2019 ◽  
Vol 225 (2) ◽  
pp. 659-670 ◽  
Author(s):  
Eloïse Huby ◽  
Johnathan A. Napier ◽  
Fabienne Baillieul ◽  
Louise V. Michaelson ◽  
Sandrine Dhondt‐Cordelier

Sign in / Sign up

Export Citation Format

Share Document