Wetland-Based Agroforestry Systems: Balancing Between Carbon Sink and Source

Author(s):  
A. Arunachalam ◽  
D. Balasubramanian ◽  
K. Arunachalam ◽  
J. C. Dagar ◽  
B. Mohan Kumar
2022 ◽  
Vol 4 ◽  
Author(s):  
Lisa Elena Fuchs ◽  
Levi Orero ◽  
Stephen Ngoima ◽  
Shem Kuyah ◽  
Henry Neufeldt

Agroforestry has potential to address the adverse effects of climate change through carbon sequestration, increasing biodiversity and improving adaptive capacity and resilience among smallholder farmers. However, this potential is context specific and insufficiently quantified in smallholder faming systems, partly because of inherent variability of smallholder farms. Our study aimed to determine the tree/shrub diversity and carbon stocks in different agroforestry systems within smallholder farms in two 100 km2 sites, the so-called lower and middle Nyando sites, in western Kenya. In both, context-specific agroforestry adoption had been promoted among households of four community associations through an asset-based community development (ABCD) approach. Their farms were assessed and compared with those of relevant comparison samples. Trees and shrubs were inventoried on a total of 106 farms, and their formations classified in five major agroforestry practices: hedgerows, multipurpose trees on farm (MPT), riparian buffers, woodlots, and boundary planting. To assess above-ground biomass (AGB) of individual trees/shrubs, diameter at breast height measurements were taken. Strong regional differences were considered in data analysis and presentation. Altogether, 3,353 and 6,346 trees/shrubs were inventoried in the lower and middle Nyando sites, respectively. AGB was significantly higher in middle than in lower Nyando. Woodlots had the highest amount of AGB carbon stock, while MPT had the highest diversity of tree/shrub species in all the groups. Conversely, boundary planting had the highest number of trees/shrubs inventoried and hence was the most common agroforestry practice across all the samples in both regions. Dominant AGB contributor species were Grevillea robusta (37.8%) in middle, and Eurphobia tirucalli (16.5%) in lower Nyando. This study provides empirical evidence that asset-based and community-driven selection and implementation of both tree/shrub species and agroforestry practices can contribute positively to species and practice diversity, which are associated with AGB carbon stock levels and wider agro-ecosystem diversity. This study hence provides benchmark information that is relevant for SDG goal 15 on “life on land,” and various specific targets, and can inform sustainable establishment of carbon sink facilities by supporting smallholders to uptake contextually suitable and economically sensible agroforestry practices in an overall effort to foster and support sustainable development.


2005 ◽  
Vol 10 (5) ◽  
pp. 597-614 ◽  
Author(s):  
OSCAR J. CACHO ◽  
GRAHAM R. MARSHALL ◽  
MARY MILNE

Projects in the forestry sector, and land-use change and forestry projects more generally, have the potential to help mitigate global warming by acting as sinks for greenhouse gasses, particularly CO2. However, concerns have been expressed that participation in carbon-sink projects may be constrained by high costs. This problem may be particularly severe for projects involving smallholders in developing countries. Of particular concern are the transaction costs incurred in developing projects, measuring, certifying, and selling the carbon-sequestration services generated by such projects. This paper addresses these issues by reviewing the implications of transaction and abatement costs in carbon-sequestration projects. An approach to estimating abatement costs is demonstrated through four case studies of agroforestry systems located in Sumatra, Indonesia. A typology of transaction costs is presented and related to existing pilot projects. The paper concludes with recommendations to reduce the disadvantages that smallholders may face in capturing the opportunities offered by carbon markets.


2016 ◽  
Vol 18 (1) ◽  
pp. 114
Author(s):  
She Wei ◽  
Huang Huang ◽  
Guan Chunyun ◽  
Chen Fu ◽  
Chen Guanghui

2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2005 ◽  
Vol 156 (11) ◽  
pp. 438-441
Author(s):  
Arbeitsgruppe Wald- und ◽  
Holzwirtschaft im Klimaschutz

With the ratification of the Kyoto Protocol aimed at reducing greenhouse gases, Switzerland is committed to reducing CO2emissions by 4.2 million tonnes by 2008. The forests in Switzerland could contribute to the country's national carbon balance with maximum 1.8 million tonnes reduction of CO2. With an increased use of the forest the emissions could be reduced by up to 2 million tonnes by the substitution of other materials. With a targeted forest management policy carbon sink reduction and the substitution value of the forest could be balanced against one another. In the framework of climate policy the Federal government should create the legal and organisational conditions for this.


Sign in / Sign up

Export Citation Format

Share Document