Household Water Treatment: Health Significance and Risk-Based Approaches for Consumer Safety

Author(s):  
Nirmala Ronnie ◽  
Peter McClure ◽  
Nimish Shah
2007 ◽  
Vol 5 (3) ◽  
pp. 385-394 ◽  
Author(s):  
Anyana Banerjee ◽  
Deborah A. McFarland ◽  
Ritu Singh ◽  
Robert Quick

Providing safe water to >1 billion people in need is a major challenge. To address this need, the Safe Water System (SWS) - household water treatment with dilute bleach, safe water storage, and behavior change - has been implemented in >20 countries. To assess the potential sustainability of the SWS, we analyzed costs in Zambia of “Clorin” brand product sold in bottles sufficient for a month of water treatment at a price of $0.09. We analyzed production, marketing, distribution, and overhead costs of Clorin before and after sales reached nationwide scale, and analyzed Clorin sales revenue. The average cost per bottle of Clorin production, marketing and distribution at start-up in 1999 was $1.88 but decreased by 82% to $0.33 in 2003, when >1.7 million bottles were sold. The financial loss per bottle decreased from $1.72 in 1999 to $0.24 in 2003. Net program costs in 2003 were $428,984, or only $0.04 per person-month of protection. A sensitivity analysis showed that if the bottle price increased to $0.18, the project would be self-sustaining at maximum capacity. This analysis demonstrated that efficiencies in the SWS supply chain can be achieved through social marketing. Even with a subsidy, overall program costs per beneficiary are low.


2012 ◽  
Vol 86 (3) ◽  
pp. 554-555 ◽  
Author(s):  
Hong Yang ◽  
Jim A. Wright ◽  
Stephen W. Gundry

2017 ◽  
Vol 16 (1) ◽  
pp. 112-125 ◽  
Author(s):  
Natalie Wilhelm ◽  
Anya Kaufmann ◽  
Elizabeth Blanton ◽  
Daniele Lantagne

Abstract Household water treatment with chlorine can improve the microbiological quality of household water and reduce diarrheal disease. We conducted laboratory and field studies to inform chlorine dosage recommendations. In the laboratory, reactors of varying turbidity (10–300 NTU) and total organic carbon (0–25 mg/L addition) were created, spiked with Escherichia coli, and dosed with 3.75 mg/L sodium hypochlorite. All reactors had >4 log reduction of E. coli 24 hours after chlorine addition. In the field, we tested 158 sources in 22 countries for chlorine demand. A 1.88 mg/L dosage for water from improved sources of <5 or <10 NTU turbidity met free chlorine residual criteria (≤2.0 mg/L at 1 hour, ≥0.2 mg/L at 24 hours) 91–94% and 82–87% of the time at 8 and 24 hours, respectively. In unimproved water source samples, a 3.75 mg/L dosage met relaxed criteria (≤4.0 mg/L at 1 hour, ≥0.2 mg/L after 24 hours) 83% and 65% of the time after 8 and 24 hours, respectively. We recommend water from improved/low turbidity sources be dosed at 1.88 mg/L and used within 24 hours, and from unimproved/higher turbidity sources be dosed at 3.75 mg/L and consumed within 8 hours. Further research on field effectiveness of chlorination is recommended.


Sign in / Sign up

Export Citation Format

Share Document