Intrinsic Parameters Measurable with MRI

1996 ◽  
pp. 6-10
Author(s):  
C. Segebarth
Keyword(s):  
Author(s):  
R.K. Jain ◽  
T. Malik ◽  
T.R. Lundquist ◽  
Q.S. Wang ◽  
R. Schlangen ◽  
...  

Abstract Backside circuit edit techniques on integrated circuits (ICs) are becoming common due to increase number of metal layers and flip chip type packaging. However, a thorough study of the effects of these modifications has not been published. This in spite of the fact that the IC engineers have sometimes wondered about the effects of backside circuit edit on IC behavior. The IC industry was well aware that modifications can lead to an alteration of the intrinsic behavior of a circuit after a FIB edit [1]. However, because alterations can be controlled [2], they have not stopped the IC industry from using the FIB to successfully reconfigure ICs to produce working “silicon” to prove design and mask changes. Reliability of silicon device structures, transistors and diodes, are investigated by monitoring intrinsic parameters before and after various steps of modification.


2005 ◽  
Vol 498-499 ◽  
pp. 129-133 ◽  
Author(s):  
Marcos Flavio de Campos ◽  
Fernando José Gomes Landgraf

SmCo5 magnets are usually produced by powder metallurgy route, including milling, compaction and orientation under magnetic field, sintering and heat treatment. The samples produced by powder metallurgy, with grain size around 10 μm, are ideal for determination of intrinsic parameters. The first step for determination of intrinsic magnetic parameters is obtaining images of domain structure in demagnetized samples. In the present study, the domain images were produced by means of Kerr effect, in a optical microscope. After the test of several etchings, Nital appears as the most appropriate for observation of magnetic domains by Kerr effect. Applying Stereology and Domain Theory, several intrinsic parameters of SmCo5 phase were determined: domain wall energy 120 erg/cm2, critical diameter for single domain particle size 2 μm and domain wall thickness 60 Å. In the case of SmCo5, and also other phases with high magnetocrystalline anisotropy, Domain Theory presents several advantages when compared with Micromagnetics.


Author(s):  
Jon Geist ◽  
Muhammad Yaqub Afridi ◽  
Craig D. McGray ◽  
Michael Gaitan

Cross-sensitivity matrices are used to translate the response of three-axis accelerometers into components of acceleration along the axes of a specified coordinate system. For inertial three-axis accelerometers, this coordinate system is often defined by the axes of a gimbal-based instrument that exposes the device to different acceleration inputs as the gimbal is rotated in the local gravitational field. Therefore, the cross-sensitivity matrix for a given three-axis accelerometer is not unique. Instead, it depends upon the orientation of the device when mounted on the gimbal. We define nine intrinsic parameters of three-axis accelerometers and describe how to measure them directly and how to calculate them from independently determined cross-sensitivity matrices. We propose that comparisons of the intrinsic parameters of three axis accelerometers that were calculated from independently determined cross-sensitivity matrices can be useful for comparisons of the cross-sensitivity-matrix measurement capability of different institutions because the intrinsic parameters will separate the accelerator-gimbal alignment differences among the participating institutions from the purely gimbal-related differences, such as gimbal-axis orthogonality errors, z-axis gravitational-field alignment errors, and angle-setting or angle-measurement errors.


2005 ◽  
Author(s):  
Zhijing Yu ◽  
Jiwei Ma ◽  
Yuquan Ma ◽  
Rensheng Che ◽  
Zhihong Li ◽  
...  

Author(s):  
Bouchra Boudine ◽  
Sebastien Kramm ◽  
Nabil El Akkad ◽  
Abdelaziz Bensrhair ◽  
Abderahim Saaidi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document