Adaptation to Climate Change and Variability: Farmer Responses to Intra-seasonal Precipitation Trends in South Africa

Author(s):  
David S.G. Thomas ◽  
Chasca Twyman ◽  
Henny Osbahr ◽  
Bruce Hewitson
Mousaion ◽  
2016 ◽  
Vol 33 (3) ◽  
pp. 1-24
Author(s):  
Emmanuel Elia ◽  
Stephen Mutula ◽  
Christine Stilwell

This study was part of broader PhD research which investigated how access to, and use of, information enhances adaptation to climate change and variability in the agricultural sector in semi-arid Central Tanzania. The research was carried out in two villages using Rogers’ Diffusion of Innovations theory and model to assess the dissemination of this information and its use by farmers in their adaptation of their farming practices to climate change and variability. This predominantly qualitative study employed a post-positivist paradigm. Some elements of a quantitative approach were also deployed in the data collection and analysis. The principal data collection methods were interviews and focus group discussions. The study population comprised farmers, agricultural extension officers and the Climate Change Adaptation in Africa project manager. Qualitative data were subjected to content analysis whereas quantitative data were analysed to generate mostly descriptive statistics using SPSS.  Key findings of the study show that farmers perceive a problem in the dissemination and use of climate information for agricultural development. They found access to agricultural inputs to be expensive, unreliable and untimely. To mitigate the adverse effects of climate change and variability on farming effectively, the study recommends the repackaging of current and accurate information on climate change and variability, farmer education and training, and collaboration between researchers, meteorology experts, and extension officers and farmers. Moreover, a clear policy framework for disseminating information related to climate change and variability is required.


2021 ◽  
Author(s):  
Musa Yusuf Jimoh ◽  
Peter Bikam ◽  
Hector Chikoore ◽  
James Chakwizira ◽  
Emaculate Ingwani

New climate change realities are no longer a doubtful phenomenon, but realities to adapt and live with. Its cogent impacts and implications’ dispositions pervade all sectors and geographic scales, making no sector or geographic area immune, nor any human endeavor spared from the associated adversities. The consequences of this emerging climate order are already manifesting, with narratives written beyond the alterations in temperature and precipitation, particularly in urban areas of semi-arid region of South Africa. The need to better understand and respond to the new climate change realities is particularly acute in this region. Thus, this chapter highlights the concept of adaptation as a fundamental component of managing climate change vulnerability, through identifying and providing insight in respect of some available climate change adaptation models and how these models fit within the premises and programmes of sustainable adaptation in semi-arid region with gaps identification. The efforts of governments within the global context are examined with households’ individual adaptation strategies to climate change hazards in Mopani District. The factors hindering the success of sustainable urban climate change adaptation strategic framework and urban households’ adaptive systems are also subjects of debate and constitute the concluding remarks to the chapter.


2016 ◽  
Vol 3 (3) ◽  
pp. 326-346 ◽  
Author(s):  
Christopher R. Bryant ◽  
◽  
Antonia D. Bousbaine ◽  
Chérine Akkari ◽  
Oumarou Daouda ◽  
...  

2020 ◽  
Author(s):  
Ralph Trancoso ◽  
Jozef Syktus

<p>Changing precipitation patterns due to climate change is a critical concern affecting society and the environment. Projected changes in global seasonal precipitation are largely heterogeneous in space, time, magnitude and direction. Therefore, reconciling projected future precipitation is pivotal for climate change science and adaptation and mitigation schemes.</p><p>This research contributes to disentangle future precipitation uncertainty globally by exploring long-term trends in projected seasonal precipitation of 33 CMIP5 and 16 CMIP6 models for the period 1980-2100. We first estimate trend slopes and significance in long-term future seasonal precipitation using the Sen-Slope and Mann-Kendall tests and constrain trends with at least 10% of cumulative changes over the 120-year period. Then, we assess convergence in the direction of trends across seasons. We highlight the world’s jurisdictions with consistent drying and wetting patterns as well as the seasonal dominance of precipitation trends.</p><p>A consistent drying pattern – where at least 78% of GCMs have decreasing precipitation trends – was observed in Central America, South and North Africa, South Europe, Southern USA and Southern South America. Unlike, a strong convergence in projected long-term wetness – where at least 78% of GCMs have increasing precipitation trends – was observed across most of Asia, Central Africa, Northern Europe, Canada, Northern US and South Brazil and surrounds.</p><p>Results show convergence in direction of seasonal precipitation trends revealing the world’s jurisdictions more likely to experience changes in future precipitation patterns. The approach is promisor to summarize trends in seasonal time-series from multiple GCMs and better constrain wetting and drying precipitation patterns. This study provides meaningful insights to inform water resource management and climate change adaptation globally.</p>


2018 ◽  
Vol 10 (2) ◽  
pp. 419-430 ◽  
Author(s):  
Krishna Reddy Kakumanu ◽  
Gurava Reddy Kotapati ◽  
Udaya Sekhar Nagothu ◽  
Palanisami Kuppanan ◽  
Suresh Reddy Kallam

Abstract Farmers, researchers and policy-makers are increasingly concerned about the potential impacts of climate change. Researchers are using various climate models to assess the impacts and identifying relevant alternative adaptation strategies to mitigate climate change. In India, rice is the major cereal crop grown and is influenced due to climate change and variability, inadequate water supply, labour shortage and methane emissions from rice ecosystems. This necessitates adoption action and upscaling of key adaption strategies like direct seeded rice (DSR) using validated data from rice growing areas in India. The study used experimental data of 2010–2014 and field survey data of DSR and non-DSR farmers collected during 2014. Results show that DSR method has incurred less tillage and labour costs by eluding puddling and transplantation by labour. Large-scale adoption of DSR was observed during 2012–2015 in Guntur district of Andhra Pradesh. This was mainly due to the delayed monsoon and water supply, reduction in cost of cultivation, capacity building of stakeholders and their active involvement in awareness and training programmes. The study has demonstrated that integrated extension approach in technology dissemination and scaling-out through stakeholder integration is crucial. However, a mission mode framework is needed for technology upscaling at system level.


Sign in / Sign up

Export Citation Format

Share Document