Dynamics and Control of Flapping Wing MAVs

Author(s):  
David B. Doman ◽  
Michael W. Oppenheimer ◽  
David O. Sigthorsson
Author(s):  
Abdolbaghi Bakhtiari ◽  
Shahram Ehtemadi Haghighi ◽  
Adel Maghsoudpour

The dynamics and control of a flapping wing robot are studied in this paper which helps to develop a complete dynamic model for the robot consisting of tail effects and also enhance the path tracking control of the robot. In the first part of the paper, the aerodynamic model of the wings is presented, and an aerodynamic force model for the tail is introduced which includes the leading edge suction effects. An experiment is also carried out on a flapping wing robot in a laboratory environment to evaluate the forces on the tail and its result will be compared with the results of the model presented for the tail. In the second part, a controller is designed for the robot. This controller uses the nonlinear dynamic inversion method to solve the nonlinear equations of the control system. The experimental results of the tail forces agree well with the theoretical predictions and reveal that the tail aerodynamics are affected by leading edge suction. Also, simulation results show that the competence performance and convergence performance of the designed controller are obtained.


2012 ◽  
Vol 70 (2) ◽  
pp. 907-939 ◽  
Author(s):  
Haithem E. Taha ◽  
Muhammad R. Hajj ◽  
Ali H. Nayfeh

2012 ◽  
Vol 246-247 ◽  
pp. 537-542
Author(s):  
Zhuang Zhao ◽  
Hai Yuan Jiang ◽  
Hua Chang ◽  
Jing Guo

To investigate the aerodynamic performance of a flexible flapping wing aircraft, a flapping-wing system were design and an experiment were set up to measure the unsteady aerodynamic forces of the flapping motion. The thrust formula and resistance formula described aerodynamic forces. The lift and thrust of this mechanism were measured for different angles of attack and wind velocities. Results indicate that the thrust increases with the flapping frequency and the lift increase with the wind velocity, while the lift coefficient decreases while the velocity increases. It is realized that the wing’s transformation which imitated birds leads less resistance when flapping upward which impacts the aerodynamic lift generation and the bionic winglet leads to a change in the leading edge vortex and span-wise flow structures, which decrease the airflow’s backward pull. Models were introduced which were used in the design process and show its aerodynamic performance. The flexible flapping wing vehicle is still an open research area.


2013 ◽  
Vol 198 ◽  
pp. 206-219
Author(s):  
Krzysztof Sibilski ◽  
Andrzej Żyluk

This paper presents modeling, simulation, and control of a flapping wing Micromechanical Flying Insect (MFI) called Entomopter. The overall geometry of this MFI is based on hummingbirds and large insects. This paper presents methods for investigation of MFI aerodynamics, flight dynamics, and control. The simulation results reveal important information regarding the behavior of the system, that could be used in future designs


2018 ◽  
Vol 4 (5) ◽  
pp. 7
Author(s):  
Shivam Dwivedi ◽  
Prof. Vikas Gupta

As the four-wheel steering (4WS) system has great potentials, many researchers' attention was attracted to this technique and active research was made. As a result, passenger cars equipped with 4WS systems were put on the market a few years ago. This report tries to identify the essential elements of the 4WS technology in terms of vehicle dynamics and control techniques. Based on the findings of this investigation, the report gives a mechanism of electronically controlling the steering system depending on the variable pressure applied on it. This enhances the controlling and smoothens the operation of steering mechanism.


Sign in / Sign up

Export Citation Format

Share Document