scholarly journals Contribution of TRPC1 and Orai1 to Ca2+ Entry Activated by Store Depletion

Author(s):  
Kwong Tai Cheng ◽  
Hwei Ling Ong ◽  
Xibao Liu ◽  
Indu S. Ambudkar
Keyword(s):  
1994 ◽  
Vol 269 (38) ◽  
pp. 23597-23602
Author(s):  
A. Gamberucci ◽  
B. Innocenti ◽  
R. Fulceri ◽  
G. Bànhegyi ◽  
R. Giunti ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3292
Author(s):  
Kuo Zhou ◽  
Xuexue Zhu ◽  
Ke Ma ◽  
Jibin Liu ◽  
Bernd Nürnberg ◽  
...  

In chronic kidney disease, hyperphosphatemia upregulates the Ca2+ channel ORAI and its activating Ca2+ sensor STIM in megakaryocytes and platelets. ORAI1 and STIM1 accomplish store-operated Ca2+ entry (SOCE) and play a key role in platelet activation. Signaling linking phosphate to upregulation of ORAI1 and STIM1 includes transcription factor NFAT5 and serum and glucocorticoid-inducible kinase SGK1. In vascular smooth muscle cells, the effect of hyperphosphatemia on ORAI1/STIM1 expression and SOCE is suppressed by Mg2+ and the calcium-sensing receptor (CaSR) agonist Gd3+. The present study explored whether sustained exposure to Mg2+ or Gd3+ interferes with the phosphate-induced upregulation of NFAT5, SGK1, ORAI1,2,3, STIM1,2 and SOCE in megakaryocytes. To this end, human megakaryocytic Meg-01 cells were treated with 2 mM ß-glycerophosphate for 24 h in the absence and presence of either 1.5 mM MgCl2 or 50 µM GdCl3. Transcript levels were estimated utilizing q-RT-PCR, protein abundance by Western blotting, cytosolic Ca2+ concentration ([Ca2+]i) by Fura-2 fluorescence and SOCE from the increase in [Ca2+]i following re-addition of extracellular Ca2+ after store depletion with thapsigargin (1 µM). As a result, Mg2+ and Gd3+ upregulated CaSR and blunted or virtually abolished the phosphate-induced upregulation of NFAT5, SGK1, ORAI1,2,3, STIM1,2 and SOCE in megakaryocytes. In conclusion, Mg2+ and the CaSR agonist Gd3+ interfere with phosphate-induced dysregulation of [Ca2+]i in megakaryocytes.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Jozsef Maléth ◽  
Seok Choi ◽  
Shmuel Muallem ◽  
Malini Ahuja
Keyword(s):  

1981 ◽  
Vol 213 (1192) ◽  
pp. 303-324 ◽  

Effects of caffeine on contractile tension and on intracellular action and resting potentials were examined in single frog heart trabeculae suspended in a rapid perfusion chamber. Trabeculae from atria responded more readily than those from ventricles and were therefore studied in greater detail. Both the contracture and twitch responses, the one obtained at high (>10 mM), the other at low (<10mM) caffeine concentrations, consisted of a transient tension rise followed by a maintained phase of lower, but still enhanced, tension. The hypothesis was tested that the transient response is due to the release of calcium from the sarcoplasmic reticulum (s.r.), whereas the maintained tension results from enhanced calcium influx through the cell surface. Support for these ideas was obtained by examining the response to step changes of external calcium and caffeine concentrations, applied in various combinations, simultaneously and in sequence. It also emerged that the effects on twitch tension of calcium derived from (a) s.r. discharge and ( b) influx are additive, to a first approximation. A test procedure for monitoring the s.r. store content was evolved to follow the accumulation of s.r. calcium after a preceding depletion. The results obtained, and others, suggest that the s.r. calcium pump can be operative in atrial heart cells and capable, after store depletion, of reabsorbing up to some 40 % of calcium activating a twitch, the remainder being, presumably, extruded from the cells.


Pancreatology ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. S48-S49
Author(s):  
József Maléth ◽  
Seok Choi ◽  
Malini Ahuja ◽  
Péter Hegyi ◽  
Shmuel Muallem
Keyword(s):  

2014 ◽  
Vol 111 (6) ◽  
pp. 1369-1382 ◽  
Author(s):  
Ann M. Clemens ◽  
Daniel Johnston

Disruptions of endoplasmic reticulum (ER) Ca2+ homeostasis are heavily linked to neuronal pathology. Depletion of ER Ca2+ stores can result in cellular dysfunction and potentially cell death, although adaptive processes exist to aid in survival. We examined the age and region dependence of one postulated, adaptive response to ER store-depletion (SD), hyperpolarization-activated cation-nonspecific ( h)-channel plasticity in neurons of the dorsal and ventral hippocampus (DHC and VHC, respectively) from adolescent and adult rats. With the use of whole-cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons, we observed a change in h-sensitive measurements in response to SD, induced by treatment with cyclopiazonic acid, a sarcoplasmic reticulum/ER Ca2+-ATPase blocker. We found that whereas DHC and VHC neurons in adolescent animals respond to SD with a perisomatic expression of SD h plasticity, adult animals express SD h plasticity with a dendritic and somatodendritic locus of plasticity in DHC and VHC neurons, respectively. Furthermore, SD h plasticity in adults was dependent on membrane potential and on the activation of L-type voltage-gated Ca2+ channels. These results suggest that cellular responses to the impairment of ER function, or ER stress, are dependent on brain region and age and that the differential expression of SD h plasticity could provide a neural basis for region- and age-dependent disease vulnerabilities.


2016 ◽  
Vol 38 (4) ◽  
pp. 1643-1651 ◽  
Author(s):  
Jing Yan ◽  
Bingbing Zhang ◽  
Zohreh Hosseinzadeh ◽  
Florian Lang

Background/Aims: Oscillations of cytosolic Ca2+ activity ([Ca2+]i) participate in the orchestration of tumor cell proliferation. [Ca2+]i could be increased by intracellular Ca2+ release followed by store-operated Ca2+-entry (SOCE). [Ca2+]i could be decreased by Ca2+ extrusion via Na+/Ca2+ exchange. Mechanisms accomplishing SOCE include the pore-forming ion channel unit Orai1 and its regulator STIM1, Na+/Ca2+ exchanger isoforms include NCX1. In MCF-7 breast carcinoma cells Orai1 and NCX1 have previously been shown to be modified by pharmacological inhibition of Janus activated kinase JAK2. The present study explored whether SOCE and Na+/Ca2+ exchange are similarly sensitive to pharmacological JAK3 inhibition. Methods: MCF-7 breast carcinoma cells were studied in the absence and presence of the JAK3 inhibitor WHI-P154 (22 µM). [Ca2+]i was estimated from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM), and Na+/Ca2+ exchanger activity from increase of [Ca2+]i following extracellular Na+ removal. Transcript levels were quantified with RT-PCR. Results: Addition of ATP (100 µM) was followed by a rapid increase of [Ca2+]i, which was significantly blunted by WHI-P154. Thapsigargin-induced intracellular Ca2+ release was not appreciably influenced by WHI-P154. Subsequent SOCE was, however, significantly blunted by WHI-P154. WHI-P154 further significantly decreased Orai1 transcript levels. The increase of [Ca2+]i following extracellular Na+-removal and the NCX1 transcript levels were similarly decreased by WHI-P154. Conclusions: The JAK3 inhibitor WHI-P154 decreases both, Orai1 and NCX1 transcript levels and thus impairs SOCE and Na+/Ca2+ exchange.


2001 ◽  
Vol 280 (5) ◽  
pp. L870-L880 ◽  
Author(s):  
Sharon S. McDaniel ◽  
Oleksandr Platoshyn ◽  
Jian Wang ◽  
Ying Yu ◽  
Michele Sweeney ◽  
...  

Agonist-induced increases in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery (PA) smooth muscle cells (SMCs) consist of a transient Ca2+ release from intracellular stores followed by a sustained Ca2+ influx. Depletion of intracellular Ca2+ stores triggers capacitative Ca2+ entry (CCE), which contributes to the sustained increase in [Ca2+]cyt and the refilling of Ca2+ into the stores. In isolated PAs superfused with Ca2+-free solution, phenylephrine induced a transient contraction, apparently by a rise in [Ca2+]cyt due to Ca2+ release from the intracellular stores. The transient contraction lasted for 3–4 min until the Ca2+ store was depleted. Restoration of extracellular Ca2+ in the presence of phentolamine produced a contraction potentially due to a rise in [Ca2+]cyt via CCE. The store-operated Ca2+ channel blocker Ni2+ reduced the store depletion-activated Ca2+ currents, decreased CCE, and inhibited the CCE-mediated contraction. In single PASMCs, we identified, using RT-PCR, five transient receptor potential gene transcripts. These results suggest that CCE, potentially through transient receptor potential-encoded Ca2+ channels, plays an important role in agonist-mediated PA contraction.


Sign in / Sign up

Export Citation Format

Share Document