Towards a Physically Based Theory of High-Concentration-Gradient Dispersion in Porous Media

Author(s):  
R. Schotting ◽  
A. J. Landman
1999 ◽  
Vol 22 (7) ◽  
pp. 665-680 ◽  
Author(s):  
R.J. Schotting ◽  
H. Moser ◽  
S.M. Hassanizadeh

1995 ◽  
Vol 18 (4) ◽  
pp. 203-215 ◽  
Author(s):  
S. Majid Hassanizadeh ◽  
Anton Leijnse

2020 ◽  
Vol 11 (1) ◽  
pp. 7735-7745

Biotechnology is considered one of the most influential technologies in various areas of human life, including health, economics, and the environment. Protein engineering is one of the major biotechnology tools in the field of modification and advancement of biocatalysts capabilities. Among the most effective protein engineering methods, in particular, to improve the industrial strain capabilities, is the shuffling genome method. This study aimed to follow knowledge and biocatalysts engineering techniques based on DNA shuffling methods. In the first step, two procedures were followed (DES method and compatibility according to the concentration gradient of Diazinon) to obtain mutant strains. Acquired mutant strains from both methods were resistant to high concentrations of poison up to 3000 mg/L. The activity of these strains also demonstrated their elevated activity compared to parent samples. The highest activity was related to four strains IR1.G1, IR1.D8, IR1.D4, and IR1.D5, which were 0.234 U/ml, 0.1 U/ml, 0.098 U/ml, and 0.066 U/ml, respectively. The improved strain was obtained via the concentration gradient of the diazinon method (IRL1.G1 strain) in comparison with IRL1.D8 strain (owning highest activity through DES method) possesses excessive activity in 3000 mg/L concentration of Diazinon. The evaluated results of first-generation genome shuffling of strains (the first round of protoplast fusion) also indicated that those shuffled strains with the ability to grow in the vicinity of the toxin (3000 mg/L concentration of Diazinon) showed better activity than obtained mutated strains by both methods (concentration gradient of the toxin and the DES method). In the final stage, the best results were related to IRL1.F2, IRL1.F3, and IRL1.F1 shuffled strains with 0.541 mg/L, 0.523 mg/L, and 0.509 mg/L, respectively. The highest activity belonged to the IRL1.F2 genome shuffled strain (first round of protoplast fusion). This strain could grow in a high concentration of toxin, and also, the activity was increased 30, 3.6, and 2.3 times in comparison with the parent strain (IRL1), IRL.D8 mutant, and IRL1.G1, respectively.


2020 ◽  
Vol 223 (2) ◽  
pp. 993-1006
Author(s):  
Luong Duy Thanh ◽  
Damien Jougnot ◽  
Phan Van Do ◽  
Nguyen Van Nghia A ◽  
Vu Phi Tuyen ◽  
...  

SUMMARY In reservoir and environmental studies, the geological material characterization is often done by measuring its electrical conductivity. Its main interest is due to its sensitivity to physical properties of porous media (i.e. structure, water content, or fluid composition). Its quantitative use therefore depends on the efficiency of the theoretical models to link them. In this study, we develop a new physically based model that takes into account the surface conductivity for estimating electrical conductivity of porous media under partially saturated conditions. The proposed model is expressed in terms of electrical conductivity of the pore fluid, water saturation, critical water saturation and microstructural parameters such as the minimum and maximum pore/capillary radii, the pore fractal dimension, the tortuosity fractal dimension and the porosity. Factors influencing the electrical conductivity in porous media are also analysed. From the proposed model, we obtain an expression for the relative electrical conductivity that is consistent with other models in literature. The model predictions are successfully compared with published experimental data for different types of porous media. The new physically based model for electrical conductivity opens up new possibilities to characterize porous media under partially saturated conditions with geoelectrical and electromagnetic techniques.


2019 ◽  
Vol 219 (2) ◽  
pp. 866-876 ◽  
Author(s):  
Luong Duy Thanh ◽  
Damien Jougnot ◽  
Phan Van Do ◽  
Nguyen Van Nghia A

SUMMARY Electrical conductivity is one of the most commonly used geophysical method for reservoir and environmental studies. Its main interest lies in its sensitivity to key properties of storage and transport in porous media. Its quantitative use therefore depends on the efficiency of the petrophysical relationship to link them. In this work, we develop a new physically based model for estimating electrical conductivity of saturated porous media. The model is derived assuming that the porous media is represented by a bundle of tortuous capillary tubes with a fractal pore-size distribution. The model is expressed in terms of the porosity, electrical conductivity of the pore liquid and the microstructural parameters of porous media. It takes into account the interface properties between minerals and pore water by introducing a surface conductivity. Expressions for the formation factor and hydraulic tortuosity are also obtained from the model derivation. The model is then successfully compared with published data and performs better than previous models. The proposed approach also permits to relate the electrical conductivity to other transport properties such as the hydraulic conductivity.


2021 ◽  
Vol 52 ◽  
pp. e1288
Author(s):  
César Canché-Collí ◽  
Felipe Barahona ◽  
Luis A. Medina-Medina ◽  
Azucena Canto

Background: Floral nectar and honey vary in sugar concentration, from low concentration in nectar to high concentration in honey. Variation in sugar concentration is a gradient that determines yeast growth and can lead to its ecological niche specialization. Objective: Evaluate the effect of a sugar concentration gradient on the growth kinetics and cell size of yeasts isolated from the floral nectar and honey of Melipona beecheii. Methods: Four strains identified as Metschnikowia koreensis and Sympodiomycopsis paphiopedili, isolated from floral nectar, and Starmerella apicola and Starmerella apicola 2, isolated from honey of Melipona beecheii were grown in artificial media with a gradient of 2, 10, 20, 40 and 60% glucose. We evaluated culture density (cells / µL), growth parameters, and cell size in each strain. Results and Conclusions: Strains isolated from honey had high growth rates at the highest glucose concentrations, while strains isolated from floral nectar grew best at low concentrations. Cell size decreased as glucose concentration increased in all strains. The data supports the hypothesis that sugar concentration gradient is an ecological filter that modifies the growth and morphology of yeasts associated with flowers and honey and leads to niche specialization in yeasts that colonize plant-bee environments.


Sign in / Sign up

Export Citation Format

Share Document