Volumetric and aerial rates of heterotrophic bacterial production in epiand hypolimnia: the role of nutrients and system morphometry

2003 ◽  
pp. 193-202
Author(s):  
André C. P. Cimbleris ◽  
Jacob Kalff
Keyword(s):  
2015 ◽  
Vol 12 (6) ◽  
pp. 1983-1992 ◽  
Author(s):  
I. Obernosterer ◽  
M. Fourquez ◽  
S. Blain

Abstract. It has been univocally shown that iron (Fe) is the primary limiting nutrient for phytoplankton metabolism in high-nutrient, low-chlorophyll (HNLC) waters, yet the question of how this trace metal affects heterotrophic microbial activity is far less understood. We investigated the role of Fe for bacterial heterotrophic production and growth at three contrasting sites in the naturally Fe-fertilized region east of the Kerguelen Islands and at one site in HNLC waters during the KEOPS2 (Kerguelen Ocean and Plateau Compared Study 2) cruise in spring 2011. We performed dark incubations of natural microbial communities amended either with iron (Fe, as FeCl3) or carbon (C, as trace-metal clean glucose), or a combination of both, and followed bacterial abundance and heterotrophic production for up to 7 days. Our results show that single and combined additions of Fe and C stimulated bulk and cell-specific bacterial production at the Fe-fertilized sites, while in HNLC waters only combined additions resulted in significant increases in these parameters. Bacterial abundance was enhanced in two out of the three experiments performed in Fe-fertilized waters but did not respond to Fe or C additions in HNLC waters. Our results provide evidence that both Fe and C are present at limiting concentrations for bacterial heterotrophic activity in the naturally fertilized region off the Kerguelen Islands in spring, while bacteria were co-limited by these elements in HNLC waters. These results shed new light on the role of Fe in bacterial heterotrophic metabolism in regions of the Southern Ocean that receive variable Fe inputs.


2007 ◽  
Vol 73 (17) ◽  
pp. 5539-5546 ◽  
Author(s):  
Vanessa K. Michelou ◽  
Matthew T. Cottrell ◽  
David L. Kirchman

ABSTRACT We examined the contribution of photoheterotrophic microbes—those capable of light-mediated assimilation of organic compounds—to bacterial production and amino acid assimilation along a transect from Florida to Iceland from 28 May to 9 July 2005. Bacterial production (leucine incorporation at a 20 nM final concentration) was on average 30% higher in light than in dark-incubated samples, but the effect varied greatly (3% to 60%). To further characterize this light effect, we examined the abundance of potential photoheterotrophs and measured their contribution to bacterial production and amino acid assimilation (0.5 nM addition) using flow cytometry. Prochlorococcus and Synechococcus were abundant in surface waters where light-dependent leucine incorporation was observed, whereas aerobic anoxygenic phototrophic bacteria were abundant but did not correlate with the light effect. The per-cell assimilation rates of Prochlorococcus and Synechococcus were comparable to or higher than those of other prokaryotes, especially in the light. Picoeukaryotes also took up leucine (20 nM) and other amino acids (0.5 nM), but rates normalized to biovolume were much lower than those of prokaryotes. Prochlorococcus was responsible for 80% of light-stimulated bacterial production and amino acid assimilation in surface waters south of the Azores, while Synechococcus accounted for on average 12% of total assimilation. However, nearly 40% of the light-stimulated leucine assimilation was not accounted for by these groups, suggesting that assimilation by other microbes is also affected by light. Our results clarify the contribution of cyanobacteria to photoheterotrophy and highlight the potential role of other photoheterotrophs in biomass production and dissolved-organic-matter assimilation.


2017 ◽  
Vol 101 (8) ◽  
pp. 3131-3142 ◽  
Author(s):  
Mostafa Seifan ◽  
Ali Khajeh Samani ◽  
Aydin Berenjian

2007 ◽  
Vol 4 (5) ◽  
pp. 3799-3828 ◽  
Author(s):  
F. Van Wambeke ◽  
S. Bonnet ◽  
T. Moutin ◽  
P. Raimbault ◽  
G. Alarçon ◽  
...  

Abstract. The role of potential factors limiting bacterial growth was investigated along vertical and longitudinal gradients across the South Eastern Pacific Gyre. The effects of glucose, nitrate, ammonium and phosphate additions on heterotrophic bacterial production (using leucine technique) were studied in parallel in unfiltered seawater samples incubated under natural daily irradiance. Longitudinally, the enrichments realized on the subsurface showed three types of responses. From the Marquesas plateau (8° W to approx 125° W), bacteria were not bottom-up controlled, as confirmed by the huge potential of growth in non-enriched seawater (43±24 times in 24 h). Within the Gyre (125° W–95° W), nitrogen alone stimulated leucine incorporation rates by a factor of 5.6±3.6, but rapidly labile carbon (glucose) became a second limiting factor (enhancement factor 49±32 when the two elements were added). Finally from the border of the gyre to the Chilean upwelling (95° W–73° W), labile carbon was the only factor stimulating heterotrophic bacterial production. Interaction between phytoplankton and heterotrophic bacterial communities and the direct versus indirect effect of iron and macronutrients on bacterial production were also investigated in four selected sites: two sites on the vicinity of the Marquesas plateau, the centre of the gyre and the Eastern border of the gyre. Both phytoplankton and heterotrophic bacteria were limited by availability of nitrogen within the gyre, but not by iron. While iron limited phytoplankton at Marquesas plateau and at the eastern border of the gyre, heterotrophic bacteria were only limited by availability of labile DOC in those environments.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Sign in / Sign up

Export Citation Format

Share Document