Application of Ionic Liquids in Extraction and Separation of Metals

2012 ◽  
pp. 119-153 ◽  
Author(s):  
Guocai Tian
2011 ◽  
Vol 44 (10) ◽  
pp. 679-685 ◽  
Author(s):  
Yuzo Baba ◽  
Fukiko Kubota ◽  
Noriho Kamiya ◽  
Masahiro Goto

2015 ◽  
Vol 17 (5) ◽  
pp. 2931-2942 ◽  
Author(s):  
Sofía Riaño ◽  
Koen Binnemans

Neodymium, dysprosium and cobalt can be efficiently separated using a simple and environmentally friendly extraction system with ionic liquids.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7204
Author(s):  
Olga Lanaridi ◽  
Sonja Platzer ◽  
Winfried Nischkauer ◽  
Andreas Limbeck ◽  
Michael Schnürch ◽  
...  

Recovery of platinum group metals from spent materials is becoming increasingly relevant due to the high value of these metals and their progressive depletion. In recent years, there is an increased interest in developing alternative and more environmentally benign processes for the recovery of platinum group metals, in line with the increased focus on a sustainable future. To this end, ionic liquids are increasingly investigated as promising candidates that can replace state-of-the-art approaches. Specifically, phosphonium-based ionic liquids have been extensively investigated for the extraction and separation of platinum group metals. In this paper, we present the extraction capacity of several phosphonium-based ionic liquids for platinum group metals from model deep eutectic solvent-based acidic solutions. The most promising candidates, P66614Cl and P66614B2EHP, which exhibited the ability to extract Pt, Pd, and Rh quantitively from a mixed model solution, were additionally evaluated for their capacity to recover these metals from a spent car catalyst previously leached into a choline-based deep eutectic solvent. Specifically, P66614Cl afforded extraction of the three target precious metals from the leachate, while their partial separation from the interfering Al was also achieved since a significant amount (approx. 80%) remained in the leachate.


2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Pavel A. Yudaev ◽  
Evgeniy M. Chistyakov

This review addresses research and development on the use of ionic liquids as extractants and diluents in the solvent extraction of metals. Primary attention is given to the efficiency and selectivity of metal extraction from industrial wastewater with ionic liquids composed of various cations and anions. The review covers literature sources published in the period of 2010–2021. The bibliography includes 98 references dedicated to research on the extraction and separation of lanthanides (17 sources), actinides (5 sources), heavy metals (35 sources), noble metals, including the platinum group (16 sources), and some other metals.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 286 ◽  
Author(s):  
Natalia Treder ◽  
Tomasz Bączek ◽  
Katarzyna Wychodnik ◽  
Justyna Rogowska ◽  
Lidia Wolska ◽  
...  

Recent years have seen the increased utilization of ionic liquids (ILs) in the development and optimization of analytical methods. Their unique and eco-friendly properties and the ability to modify their structure allows them to be useful both at the sample preparation stage and at the separation stage of the analytes. The use of ILs for the analysis of pharmaceuticals seems particularly interesting because of their systematic delivery to the environment. Nowadays, they are commonly detected in many countries at very low concentration levels. However, due to their specific physiological activity, pharmaceuticals are responsible for bioaccumulation and toxic effects in aquatic and terrestrial ecosystems as well as possibly upsetting the body’s equilibrium, leading to the dangerous phenomenon of drug resistance. This review will provide a comprehensive summary of the use of ILs in various sample preparation procedures and separation methods for the determination of pharmaceuticals in environmental and biological matrices based on liquid-based chromatography (LC, SFC, TLC), gas chromatography (GC) and electromigration techniques (e.g., capillary electrophoresis (CE)). Moreover, the advantages and disadvantages of ILs, which can appear during extraction and separation, will be presented and attention will be given to the criteria to be followed during the selection of ILs for specific applications.


Sign in / Sign up

Export Citation Format

Share Document