A Robust Control Approach for Decision Making and Reliability Design of Soil Structures

Author(s):  
Takeshi Sato ◽  
Takeshi Nagae ◽  
Hirofumi Nishida
2010 ◽  
Vol 130 (11) ◽  
pp. 1002-1009 ◽  
Author(s):  
Jorge Morel ◽  
Hassan Bevrani ◽  
Teruhiko Ishii ◽  
Takashi Hiyama

2021 ◽  
Vol 11 (5) ◽  
pp. 2312
Author(s):  
Dengguo Xu ◽  
Qinglin Wang ◽  
Yuan Li

In this study, based on the policy iteration (PI) in reinforcement learning (RL), an optimal adaptive control approach is established to solve robust control problems of nonlinear systems with internal and input uncertainties. First, the robust control is converted into solving an optimal control containing a nominal or auxiliary system with a predefined performance index. It is demonstrated that the optimal control law enables the considered system globally asymptotically stable for all admissible uncertainties. Second, based on the Bellman optimality principle, the online PI algorithms are proposed to calculate robust controllers for the matched and the mismatched uncertain systems. The approximate structure of the robust control law is obtained by approximating the optimal cost function with neural network in PI algorithms. Finally, in order to illustrate the availability of the proposed algorithm and theoretical results, some numerical examples are provided.


2011 ◽  
Vol 383-390 ◽  
pp. 290-296
Author(s):  
Yong Hong Zhu ◽  
Wen Zhong Gao

Wavelet neural network based adaptive robust output tracking control approach is proposed for a class of MIMO nonlinear systems with unknown nonlinearities in this paper. A wavelet network is constructed as an alternative to a neural network to approximate unknown nonlinearities of the classes of systems. The proposed WNN adaptive law is used to compensate the dynamic inverse errors of the classes of systems. The robust control law is designed to attenuate the effects of approximate errors and external disturbances. It is proved that the controller proposed can guarantee that all the signals in the closed-loop control system are uniformly ultimately bounded (UUB) in the sense of Lyapunov. In the end, a simulation example is presented to illustrate the effectiveness and the applicability of the suggested method.


Author(s):  
Abdelkarim Ammar

Purpose This paper aims to propose an improved direct torque control (DTC) for the induction motor’s performance enhancement using dual nonlinear techniques. The exact feedback linearization is implemented to create a linear decoupled control. Besides, the fuzzy logic control approach has been inserted to generate the auxiliary control input for the feedback linearization controller. Design/methodology/approach To improve the DTC for induction motor drive, this work suggests the incorporation of two nonlinear approaches. As the classical feedback linearization suffers while the presence of uncertainties and modeling inaccuracy, it is recommended to be associated to another robust control approach to compensate the uncertainties of the model and make a robust control versus the variations of the machine parameters. Therefore, fuzzy logic controllers will be integrated as auxiliary inputs to the feedback linearization control law. Findings The simulation and the experimental validation of the proposed control algorithm show that the association of dual techniques can effectively achieve high dynamic behavior and improve the robustness against parameters variation and external disturbances. Moreover, the space vector modulation is used to preserve a fixed switching frequency, reduce ripples and low switching losses. Practical implications The theoretical, simulation and experimental studies prove that the proposed control algorithm can be used on different AC machines for variable speed drive applications such as oil drilling, traction systems and wind energy conversion systems. Originality/value The proposed DTC strategy has been developed theoretically and realized through simulation and experimental implementation. Different operation conditions have been conducted to check the ability and robustness of the control strategy, such as steady state, speed reversal maneuver, low-speed operation and parameters variation test with load application.


2021 ◽  
Vol 20 ◽  
pp. 272-280
Author(s):  
Antonis Vouzikas ◽  
Alexandros Gazis

This article studies the problem of designing robust control laws to achieve multiple performance objectives for linear uncertain systems. Specifically, in this study we have selected one of the control objectives to be a closed-loop pole placement in specific regions of the left-half complex plane. As such, a guaranteed cost based multi-objective control approach is proposed and compared with the H_2/H_∞control by means of an application example


Sign in / Sign up

Export Citation Format

Share Document