scholarly journals On the Robust Multiple Objective Control with Simultaneous Pole Placement in LMI Regions

2021 ◽  
Vol 20 ◽  
pp. 272-280
Author(s):  
Antonis Vouzikas ◽  
Alexandros Gazis

This article studies the problem of designing robust control laws to achieve multiple performance objectives for linear uncertain systems. Specifically, in this study we have selected one of the control objectives to be a closed-loop pole placement in specific regions of the left-half complex plane. As such, a guaranteed cost based multi-objective control approach is proposed and compared with the H_2/H_∞control by means of an application example

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Sami ud Din ◽  
Qudrat Khan ◽  
Fazal ur Rehman ◽  
Rini Akmeliawati

This paper presents a robust control design for the class of underactuated uncertain nonlinear systems. Either the nonlinear model of the underactuated systems is transformed into an input output form and then an integral manifold is devised for the control design purpose or an integral manifold is defined directly for the concerned class. Having defined the integral manifolds discontinuous control laws are designed which are capable of maintaining sliding mode from the very beginning. The closed loop stability of these systems is presented in an impressive way. The effectiveness and demand of the designed control laws are verified via the simulation and experimental results of ball and beam system.


Author(s):  
Hao Liu ◽  
Deyuan Liu ◽  
Jianxiang Xi ◽  
Yao Yu

A robust flight controller is proposed for the longitudinal model of generic hypersonic vehicles, whose dynamics involves nonlinearities, parameter uncertainties, and unstructured uncertainties. The proposed longitudinal controller is developed based on the standard [Formula: see text] theory and the robust compensating approach. The robust compensating approach is introduced to reduce the influences of multiple uncertainties and nonlinearities on the closed-loop control system. Compared to the [Formula: see text] control theory, these influences in the whole frequency range can be restrained. Theoretical analysis and numerical simulation results are presented to illustrate the tracking performance properties of the designed robust control approach.


2019 ◽  
Vol 20 (8) ◽  
pp. 451-460 ◽  
Author(s):  
A. A. Kolesnikov ◽  
A. A. Kuz’menko

Sliding mode control (SMC) laws are commonly used in engineering to make a system robust to parameters change, external disturbances and control object unmodeled dynamics. State-of-the-art capabilities of the theory of adaptive and robust control, the theory of fuzzy systems, artificial neural networks, etc., which are combined with SMC, couldn’t resolve current issues of SMC design: vector design and stability analysis of a closed-loop system with SMC are involved with considerable complexity. Generally the classical problem of SMC design consists in solving subtasks for transit an object from an arbitrary initial position onto the sliding surface while providing conditions for existence of a sliding mode at any point of the sliding surface as well as ensuring stable movement to the desired state. As a general rule these subtasks are solved separately. This article presents a methodology for SMC design based on successive aggregation of invariant manifolds by the procedure of method of Analytical Design of Aggregated Regulators (ADAR) from the synergetic control theory. The methodology allows design of robust control laws and simultaneous solution of classical subtasks of SMC design for nonlinear objects. It also simplifies the procedure for closed-loop system stability analyze: the stability conditions are made up of stability criterions for ADAR method functional equations and the stability criterions for the final decomposed system which dimension is substantially less than dimension of the initial system. Despite our paper presents only the scalar SMC design procedure in details, the ideas are also valid for vector design procedure: the main difference is in the number of invariant manifolds introduced at the first and following stages of the design procedure. The methodology is illustrated with design procedure examples for nonlinear engineering systems demonstrating the achievement of control goals: hitting to target invariants, insensitivity to emerging parametric and external disturbances.


2013 ◽  
Vol 416-417 ◽  
pp. 849-859
Author(s):  
Zi Jian Dong ◽  
Yong Guang Ma ◽  
Wei Peng

Network control system (NCS) is developed from the cross-integration of network technology and control technology, which is with advantages of sharing resources, low price, light weight, easy installation and maintenance, low energy consumption and so on. A robust control approach is proposed in this paper to solve the stabilization problem for networked control systems (NCS) with short time-varying delays. By considering state feedback controllers, the closed-loop NCS is described as a discrete-time linear uncertain system model. Then, the asymptotic stability condition for the obtained closed-loop NCS is derived, which establishes the quantitative relation between the stability of the closed-loop NCS and two delay parameters, namely, the allowable delay upper bound (ADB) and the allowable delay variation range (ADVR). Furthermore, design procedures for the stabilizing controllers are also presented. An illustrative example is finally given to demonstrate the effectiveness of the proposed method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Songtao Zhang ◽  
Min Zhang

Uncertainties and lead times make the closed-loop supply chain (CLSC) more complex, less stable, and then the bullwhip effect (BE) will become more intense. This paper will address a fuzzy robust control (FRC) approach to mitigate the BE in the uncertain CLSC with lead times. For the reverse channels for products in the CLSC, the customers’ used products are recycled by both the manufacturer and the third party recovery provider, and new products bought by customers within a certain period of time can be returned to the retailer. In the CLSC system, the state transformation equations of the inventories and the total operation cost are set up. A new FRC approach is proposed to mitigate the BE and realize the robust stability of the uncertain CLSC with lead times. A simulation example verifies the mitigation effect of the BE under the proposed FRC approach.


2010 ◽  
Vol 130 (11) ◽  
pp. 1002-1009 ◽  
Author(s):  
Jorge Morel ◽  
Hassan Bevrani ◽  
Teruhiko Ishii ◽  
Takashi Hiyama

Sign in / Sign up

Export Citation Format

Share Document