The Genomics of Multiple Myeloma and Its Relevance in the Molecular Classification and Risk Stratification of the Disease

2012 ◽  
pp. 543-570
Author(s):  
Antonino Neri ◽  
Luca Agnelli



Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2543-2553 ◽  
Author(s):  
Annemiek Broyl ◽  
Dirk Hose ◽  
Henk Lokhorst ◽  
Yvonne de Knegt ◽  
Justine Peeters ◽  
...  

Abstract To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138+ plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.



2013 ◽  
Vol 88 (3) ◽  
pp. 225-235 ◽  
Author(s):  
S. Vincent Rajkumar


2021 ◽  
Vol 21 ◽  
pp. S46
Author(s):  
Juhyung Kim ◽  
Jung Min Lee ◽  
Hee Jeong Cho ◽  
Sung-Hoon Jung ◽  
Ho-Jin Shin ◽  
...  


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3193-3193
Author(s):  
Toshiki Terao ◽  
Yoichi Machida ◽  
Takafumi Tsushima ◽  
Akihiro Kitadate ◽  
Daisuke Miura ◽  
...  

Introduction: Multiple myeloma (MM) is a heterogeneous malignant plasma cell (PC) disorder and the survival ranges from several months to > 10-years. Several risk stratification systems such as the Revised International Staging System (R-ISS) have been developed. PET/CT allows the direct assessment of metabolic tumor burden in various malignancies. Therefore, metabolic tumor volume (MTV) and total lesion glycolysis (TLG), which are volumetric parameters applicable to PET/CT, are emerging tools for MM prognostication. This study was aimed to determine the value of MTV and TLG using PET/CT in the prognostication and in combination with various hematologic parameters such as bone marrow PC (BMPC) percentages and circulating tumorous PCs (CPCs) to identify the patients with high-risk features. Methods: A total of 196 consecutive patients with newly diagnosed MM (NDMM) who underwent baseline whole-body PET/CT between January 2009 and June 2019 at Kameda Medical Center, Kamogawa-shi, Japan, were retrospectively analyzed. PET/CT was performed using dedicated PET/CT scanners (Discovery ST Elite Performance; GE Healthcare, Milwaukee, USA). The standard uptake value (SUV) was normalized according to the injected dose and lean body mass. The baseline SUVmax of all lesions was recorded, and the highest value was considered as the SUVmax of the patient. MTV was defined as the myeloma lesions volume visualized on PET/CT scans with SUV greater than or equal to the fixed absolute threshold of SUV = 2.5. TLG was calculated as the sum of the product of average SUV (SUVmean) and MTV of all lesions. Computer‐aided analysis of PET-CT images for MTV and TLG calculations was performed using an open-source software application of Metavol (Hokkaido University, Sapporo, Japan). The CPCs were measured using an 8-color flowcytometry and reported as the percentage per total mononuclear cells using the monoclonal antibodies of CD19, 38, 45, 56, 117, 200, κ, λ, and CD138. The BMPC was calculated by counting the percentages of CD138-stained PCs among the all nucleated cells on bone marrow biopsy samples. Eleven patients (13.8%) were excluded because the MTV data could not be retrieved. Ultimately, 185 patients were included in our analysis. Written informed consent was obtained from all patients. Results: Among the 185 patients, 28 patients (15.1%) were negative for avid lesion on PET/CT. Whole-body MTV and TLG ranged from 0 to 2440.7 mL, with a median of 34.2 mL and from 0 to 12582.4 g, with a median of 97.0 g, respectively. The best cut-off values of MTV and TLG that discriminate the survival using a receiver-operating-characteristic curve analysis were 56.4 mL and 166.4 g, respectively. The overall survival (OS) and progression-free survival (PFS) of patients with a lower cut-off value of MTV (≤56.4 mL) had better survival with not reached (NR) and 37.3 months as compared to those with a higher cut-off value (>56.4 mL) that reached 52.9 and 23.8 months, respectively (p=0.003 and 0.019). Similarly, the OS and PFS of patients with a lower cut-off value of TLG (≤166.4 g) showed better survivals with NR and 37.3 months as compared to those with a higher cut-off value (>166.4 g) that reached 54.3 and 28.8 months, respectively (p=0.0047 and 0.012). Next, we explored the prognostic impact of the clinical variables including MTV or TLG, CPCs, and BMPC. High levels of CPCs and BMPCs levels were defined as ≥0.018% of the total mononuclear cells and BMPCs of ≥57%, respectively. Univariate analysis showed that age≥70, serum creatinine≥2.0 mg/dL, R-ISS stage 3, higher cut-off value of MTV, and higher cut-off value of TLG were the associated with shorter OS. To measure the tumor volume with accuracy, we combined BMPC or CPCs and MTV or TLG. On multivariate analysis, age≥70 and the combination of higher cut-off value of MTV or TLG and high level of BMPC percentage were significantly associated with shorter OS [Hazard Ratio (HR) 2.12, p=0.038, HR 2.66, p=0.027 and HR 2.57, p=0.029, respectively] and PFS (Not assessed, HR 2.52, p=0.018 and HR 2.7, p= 0.011, respectively) (Figure 1). Conclusion: Our findings demonstrated that MTV and TLG calculated from pretreatment PET/CT were useful for risk stratification in patients with NDMM when combined with BMPC. The prognostic performance of the combined high-burden of TLG or MTV and high levels of BMPC were independent of the established risk factors. Disclosures Matsue: Novartis Pharma K.K: Honoraria; Janssen Pharmaceutical K.K.: Honoraria; Celgene: Honoraria; Takeda Pharmaceutical Company Limited: Honoraria; Ono Pharmaceutical: Honoraria.



Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4396-4396
Author(s):  
Patrick Mellors ◽  
Moritz Binder ◽  
Rhett P. Ketterling ◽  
Patricia Griepp ◽  
Linda B Baughn ◽  
...  

Introduction: Abnormal metaphase cytogenetics are associated with inferior survival in newly diagnosed multiple myeloma (MM). These abnormalities are only detected in one third of cases due to the low proliferative rate of plasma cells. It is unknown if metaphase cytogenetics improve risk stratification when using contemporary prognostic models such as the revised international staging system (R-ISS), which incorporates interphase fluorescence in situ hybridization (FISH). Aims: The aims of this study were to 1) characterize the association between abnormalities on metaphase cytogenetics and overall survival (OS) in newly diagnosed MM treated with novel agents and 2) evaluate whether the addition of metaphase cytogenetics to R-ISS, age, and plasma cell labeling index (PCLI) improves model discrimination with respect to OS. Methods: We analyzed a retrospective cohort of 483 newly diagnosed MM patients treated with proteasome inhibitors (PI) and/or immunomodulators (IMID) who had metaphase cytogenetics performed prior to initiation of therapy. Abnormal metaphase cytogenetics were defined as MM specific abnormalities, while normal metaphase cytogenetics included constitutional cytogenetic variants, age-related Y chromosome loss, and normal metaphase karyotypes. Multivariable adjusted proportional hazards regression models were fit for the association between known prognostic factors and OS. Covariates associated with inferior OS on multivariable analysis included R-ISS stage, age ≥ 70, PCLI ≥ 2, and abnormal metaphase cytogenetics. We devised a risk scoring system weighted by their respective hazard ratios (R-ISS II +1, R-ISS III + 2, age ≥ 70 +2, PCLI ≥ 2 +1, metaphase cytogenetic abnormalities + 1). Low (LR), intermediate (IR), and high risk (HR) groups were established based on risk scores of 0-1, 2-3, and 4-5 in modeling without metaphase cytogenetics, and scores of 0-1, 2-3, and 4-6 in modeling incorporating metaphase cytogenetics, respectively. Survival estimates were calculated using the Kaplan-Meier method. Survival analysis was stratified by LR, IR, and HR groups in models 1) excluding metaphase cytogenetics 2) including metaphase cytogenetics and 3) including metaphase cytogenetics, with IR stratified by presence and absence of metaphase cytogenetic abnormalities. Survival estimates were compared between groups using the log-rank test. Harrell's C was used to compare the predictive power of risk modeling with and without metaphase cytogenetics. Results: Median age at diagnosis was 66 (31-95), 281 patients (58%) were men, median follow up was 5.5 years (0.04-14.4), and median OS was 6.4 years (95% CI 5.7-6.8). Ninety-seven patients (20%) were R-ISS stage I, 318 (66%) stage II, and 68 (14%) stage III. One-hundred and fourteen patients (24%) had high-risk abnormalities by FISH, and 115 (24%) had abnormal metaphase cytogenetics. Three-hundred and thirteen patients (65%) received an IMID, 119 (25%) a PI, 51 (10%) received IMID and PI, and 137 (28%) underwent upfront autologous hematopoietic stem cell transplantation (ASCT). On multivariable analysis, R-ISS (HR 1.59, 95% CI 1.29-1.97, p < 0.001), age ≥ 70 (HR 2.32, 95% CI 1.83-2.93, p < 0.001), PCLI ≥ 2, (HR 1.52, 95% CI 1.16-2.00, p=0.002) and abnormalities on metaphase cytogenetics (HR 1.35, 95% CI 1.05-1.75, p=0.019) were associated with inferior OS. IR and HR groups experienced significantly worse survival compared to LR groups in models excluding (Figure 1A) and including (Figure 1B) the effect of metaphase cytogenetics (p < 0.001 for all comparisons). However, the inclusion of metaphase cytogenetics did not improve discrimination. Likewise, subgroup analysis of IR patients by the presence or absence of metaphase cytogenetic abnormalities did not improve risk stratification (Figure 1C) (p < 0.001). The addition of metaphase cytogenetics to risk modeling with R-ISS stage, age ≥ 70, and PCLI ≥ 2 did not improve prognostic performance when evaluated by Harrell's C (c=0.636 without cytogenetics, c=0.642 with cytogenetics, absolute difference 0.005, 95% CI 0.002-0.012, p=0.142). Conclusions: Abnormalities on metaphase cytogenetics at diagnosis are associated with inferior OS in MM when accounting for the effects of R-ISS, age, and PCLI. However, the addition of metaphase cytogenetics to prognostic modeling incorporating these covariates did not significantly improve risk stratification. Disclosures Lacy: Celgene: Research Funding. Dispenzieri:Akcea: Consultancy; Intellia: Consultancy; Alnylam: Research Funding; Celgene: Research Funding; Janssen: Consultancy; Pfizer: Research Funding; Takeda: Research Funding. Kapoor:Celgene: Honoraria; Sanofi: Consultancy, Research Funding; Janssen: Research Funding; Cellectar: Consultancy; Takeda: Honoraria, Research Funding; Amgen: Research Funding; Glaxo Smith Kline: Research Funding. Leung:Prothena: Membership on an entity's Board of Directors or advisory committees; Takeda: Research Funding; Omeros: Research Funding; Aduro: Membership on an entity's Board of Directors or advisory committees. Kumar:Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Takeda: Research Funding.



2014 ◽  
Vol 20 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Luciano J. Costa ◽  
Elizabeth J. Nista ◽  
Francis K. Buadi ◽  
Martha Q. Lacy ◽  
Angela Dispenzieri ◽  
...  


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4696-4700 ◽  
Author(s):  
Nikhil C. Munshi ◽  
Kenneth C. Anderson ◽  
P. Leif Bergsagel ◽  
John Shaughnessy ◽  
Antonio Palumbo ◽  
...  

Abstract A panel of members of the 2009 International Myeloma Workshop developed guidelines for risk stratification in multiple myeloma. The purpose of risk stratification is not to decide time of therapy but to prognosticate. There is general consensus that risk stratification is applicable to newly diagnosed patients; however, some genetic abnormalities characteristic of poor outcome at diagnosis may suggest poor outcome if only detected at the time of relapse. Thus, in good-risk patients, it is necessary to evaluate for high-risk features at relapse. Although detection of any cytogenetic abnormality is considered to suggest higher-risk disease, the specific abnormalities considered as poor risk are cytogenetically detected chromosomal 13 or 13q deletion, t(4;14) and del17p, and detection by fluorescence in situ hybridization of t(4;14), t(14;16), and del17p. Detection of 13q deletion by fluorescence in situ hybridization only, in absence of other abnormalities, is not considered a high-risk feature. High serum β2-microglobulin level and International Staging System stages II and III, incorporating high β2-microglobulin and low albumin, are considered to predict higher risk disease. There was a consensus that the high-risk features will change in the future, with introduction of other new agents or possibly new combinations.



2018 ◽  
Vol 8 (6) ◽  
Author(s):  
Arjun Lakshman ◽  
S. Vincent Rajkumar ◽  
Francis K. Buadi ◽  
Moritz Binder ◽  
Morie A. Gertz ◽  
...  


2020 ◽  
Vol 59 (10) ◽  
pp. 569-574 ◽  
Author(s):  
Scott C. Smith ◽  
Pamela A. Althof ◽  
Bhavana J. Dave ◽  
Jennifer N. Sanmann


Sign in / Sign up

Export Citation Format

Share Document