Two-Dimensional (2D) Damage Percolation/Finite Element Modeling of Sheet Metal Forming

Author(s):  
Zengtao Chen ◽  
Cliff Butcher
1987 ◽  
Vol 15 (1) ◽  
pp. 30-41 ◽  
Author(s):  
E. G. Markow

Abstract Development of the banded radial tire is discussed. A major contribution of this tire design is a reliable run-flat capability over distances exceeding 160 km (100 mi). Experimental tire designs and materials are considered; a brief theoretical discussion of the mechanics of operation is given based on initial two-dimensional studies and later on more complete finite element modeling. Results of laboratory tests for cornering, rolling resistance, and braking are presented. Low rolling resistance, good cornering and braking properties, and low tread wear rate along with good puncture resistance are among the advantages of the banded radial tire designs.


2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


Sign in / Sign up

Export Citation Format

Share Document