puncture resistance
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 52)

H-INDEX

15
(FIVE YEARS 3)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 275
Author(s):  
Jan-Yi Lin ◽  
Mei-Chen Lin ◽  
Bing-Chiuan Shiu ◽  
Ching-Wen Lou ◽  
Jia-Horng Lin ◽  
...  

In this study, shape memory polyurethane (SMP) foaming material is used as the main material that is incorporated with carbon fiber woven fabrics via two-step foaming method, forming sandwich-structured composite planks. The process is simple and efficient and facilitates any composition as required. The emphasis of this study is protection performances, involving puncture resistance, buffer absorption, and electromagnetic wave shielding effectiveness. The proposed soft PU foam composite planks consist of the top and bottom PU foam layers and an interlayer of carbon fiber woven fabric. Meanwhile, PU foam is incorporated with carbon staple fibers and an aluminized PET film for reinforcement requirements and electromagnetic wave shielding effectiveness, respectively. Based on the test results, the two-step foaming process can provide the PU foam composite planks with excellent buffer absorption, puncture resistance, and electromagnetic wave shielding effectiveness; therefore, the proposed composite planks contribute a novel structure composition to SMP, enabling it to be used as a protective composite. In addition, the composites contain conductive material and thus exhibit a greater diversity of functions.


2022 ◽  
Vol 30 ◽  
pp. 096739112110633
Author(s):  
Deepak SampathKumar ◽  
Thirumalaikumarasamy Duraisamy ◽  
Thirumal Pattabi ◽  
AshokKumar Mohankumar

At present, puncture resistance and rheological performance of shear thickening fluid (STF) is an essential design requirement for a soft armour material (target sample). The target sample is prepared with a dip and dry process of STF impregnated woven polypropylene (PP) fabric. These samples were tested and compared with neat PP fabric. The penetration depth of target samples is highly sensitive to the coefficient of friction between the indenter’s nose shape geometry and the target sample. The STF is prepared by mechanical dispersion of synthesized microsphere silica microparticles at a volume fraction of 57% in polyethylene glycol (400 g/mol). The rheological response indicates that the prepared concentration of silica microparticles in the STF suspension is observed to have a better shear thickening effect. The viscosity of suspension is highly sensitive to silica aspect ratio, volume fraction and particle size distribution in this work. Tensile tests along with puncture resistance with different indenter nose shapes geometry (hemispherical, elliptical, flat and conical) have been performed in the present study. Results indicate that the energy absorption is more with the hemispherical indenter and less with that of the conical indenter, which is attributed to the minimum surface area of contact as compared to all other indenters. A total of 16 number of fabricated target samples with various coating thicknesses of STF impregnated fabrics achieved the desired tensile strength, modulus and puncture resistance.


2021 ◽  
Vol 3 (3) ◽  
pp. 412-420
Author(s):  
Sri Ponny ◽  
Jonie Tanijaya ◽  
Suryanti Rapang Tonapa

Geotextile is made of permeable geosynthetic. Geotextile s are formed from synthetic fibers based on polymers that have high mechanical properties in tensile strength, trapezoidal tearing strength, and puncture resistance. Therefore, researchers want to increase the use of Geotextile as an added material in the tensile area of concrete blocks. The test objects used are 9 pieces of 150mm×150mm×600mm beams. The results of the research were that the addition of woven Geotextile s and non-woven Geotextile s on concrete blocks increased, for woven Geotextile s by 21.593% of beams without using Geotextile s and non-woven Geotextile s of 17.058% of beams without using Geotextile s. So the use of Geotextile s on concrete blocks can improve quality because the value of the flexural strength of beams using Geotextile s is greater than beams without using Geotextiles.


2021 ◽  
Vol 7 (10) ◽  
pp. 95269-95280
Author(s):  
Denise Dantas Muniz ◽  
Normando Perazzo Barbosa ◽  
Eliandro Pereira Teles ◽  
Edvaldo Amaro Santos Correia ◽  
Letícia Dantas Muniz Alves ◽  
...  

2021 ◽  
Vol 55 (7-8) ◽  
pp. 849-865
Author(s):  
PARTHIBAN FATHIRAJA ◽  
SUGUMAR GOPALRAJAN ◽  
MASILAN KARUNANITHI ◽  
MURALIDHARAN NAGARAJAN ◽  
MOHAN CHITRADURGA OBAIAH ◽  
...  

The aim of the study has been to develop a biodegradable film from marine polysaccharides. The optimization of polysaccharides quantity for the composite film was sought by empirical response surface methodology. The Box–Behnken Model Design was applied to optimize the concentration of chitosan (1.0-2.0% (w/v), agar (1.0-2.0% (w/v) and glycerol (0.1-0.5% (w/v) as independent variables to achieve the goal. The overall desirability function fits with the quadratic model (0.862043) at a significant level (p < 0.05) for the optimum concentration of chitosan (1.5% (w/v), agar (2.0% (w/v) and glycerol (0.41% (w/v) to obtain the minimum water vapor permeability (7.25 10-10g m m-2 Pa-1 s-1) and maximum tensile strength (12.21 Ma P), elongation at break (7.32%) and puncture resistance (16.18 N) in the optimized composite film. The absolute residual errors of experimental and predicted responses were between 1.24 and 3.56% acceptable levels. Attenuated total reflection–Fourier transform infrared spectroscopy confirmed the intermolecular non-covalent hydrogen bond between the hydroxyl groups of agar and glycerol with the amino group of chitosan. 3D atomic force microscopy images revealed that the chitosan, agar and glycerol film has layer-by-layer smooth surface properties due to homogenous interaction among the polysaccharides; this provides the film with good mechanical properties and with functional application. Chitosan was found to be responsible for the lower level of water vapor permeability and higher puncture resistance of the film. Tensile strength and elongation at break were influenced by agar and glycerol. The whiteness of the film was negatively affected with the concentration of chitosan.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5378
Author(s):  
Ailin Chen ◽  
Komal Thind ◽  
Kahraman G. Demir ◽  
Grace X. Gu

Fish scales serve as a natural dermal armor with remarkable flexibility and puncture resistance. Through studying fish scales, researchers can replicate these properties and tune them by adjusting their design parameters to create biomimetic scales. Overlapping scales, as seen in elasmoid scales, can lead to complex interactions between each scale. These interactions are able to maintain the stiffness of the fish’s structure with improved flexibility. Hence, it is important to understand these interactions in order to design biomimetic fish scales. Modeling the flexibility of fish scales, when subject to shear loading across a substrate, requires accounting for nonlinear relations. Current studies focus on characterizing these kinematic linear and nonlinear regions but fall short in modeling the kinematic phase shift. Here, we propose an approach that will predict when the linear-to-nonlinear transition will occur, allowing for more control of the overall behavior of the fish scale structure. Using a geometric analysis of the interacting scales, we can model the flexibility at the transition point where the scales start to engage in a nonlinear manner. The validity of these geometric predictions is investigated through finite element analysis. This investigation will allow for efficient optimization of scale-like designs and can be applied to various applications.


2021 ◽  
pp. 004051752110417
Author(s):  
Qian Wang ◽  
Yan Zhang ◽  
Chunling Liang ◽  
Yinchang Liao ◽  
Ping Wang ◽  
...  

Silkworm cocoons illustrate excellent puncture-resistance performance after an insight into their layers while a clear understanding of the correlation between the excellent puncture property and the silk secondary structure is still lacking. Herein, we peeled silkworm cocoon into eight layers, and a combination of examination techniques including scanning electron microscopy, tensile mechanical test, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction were applied to figure out the morphologies (surface and cross-section view), mechanical properties, secondary structure, the content of β-sheet, and crystallinity of each layer's fibroin after degumming. The results indicated that the fifth layer offers a higher level of puncture-resistance than the other layers except for the eighth layer. Additionally, a high content level of β-sheet structure and high crystallinity gives rise to the high puncture strength as for hierarchical silk fibers. In general, the new finding holds great potential inspiration for the design of puncture-resistant composites.


Author(s):  
Hong-Yan Zhao ◽  
Yong-Qin Qiang ◽  
Hao-Kai Peng ◽  
Meng-Fan Xing ◽  
Xia-Yun Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document