Insect Pest Management in Rice in the United States

1990 ◽  
pp. 181-189 ◽  
Author(s):  
M. O. Way
2009 ◽  
Vol 20 (6) ◽  
pp. 279-284 ◽  
Author(s):  
Frank H. Arthur ◽  
Judy A. Johnson ◽  
Lisa G. Neven ◽  
Guy J. Hallman ◽  
Peter A. Follett

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Whitney Cranshaw ◽  
Melissa Schreiner ◽  
Kadie Britt ◽  
Thomas P Kuhar ◽  
John McPartland ◽  
...  

Abstract Hemp (Cannabis sativa L.) is now being grown within the United States over a much broader geographic area and for different uses than during its last period of significant production that ended after World War II. Within the past 3 yr, a large number of arthropod species have been documented to feed on hemp in the United States. Among key pest species, corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), has demonstrated greatest potential for crop injury, being particularly damaging to flower buds. Hemp russet mite, Aculops cannibicola (Farkas), and cannabis aphid, Phorodon cannabis Passerini, are the two species observed most damaging among those that suck plant fluids. Eurasian hemp borer, Grapholita delineana Walker, is widely present east of the Rocky Mountains and appears to have potential to significantly damage both flower buds and developing seeds. Numerous species of caterpillars, grasshoppers, and beetles chew hemp foliage; the severity of these defoliation injuries appears to be minimal, but needs further study. Similarly, numerous seed feeding hemipterans, most notably stink bugs and Lygus bugs, are regularly found in the crop but injury potential remains unclear. Some preliminary efforts have been made to develop integrated pest management strategies for these insects, particularly for corn earworm. Future research can be expected to rapidly resolve many of the data gaps that presently restrict advancing pest management on the crop. However, a major confounding issue involves the use of pesticides on hemp. Federal agencies have not yet provided clear direction on this issue, and regulatory decisions have subsequently devolved to the states.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kadie E Britt ◽  
Thomas P Kuhar ◽  
Whitney Cranshaw ◽  
Christopher T McCullough ◽  
Sally V Taylor ◽  
...  

Abstract Corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), has emerged as an injurious insect pest to hemp, Cannabis sativa L., a crop newly reintroduced to the United States. Growing hemp presents a potential alternative economic opportunity for farmers but can be challenging with a market that is unstable and just developing. One of the most notable production challenges is managing corn earworm, an insect pest that is particularly damaging when it feeds on flower buds produced in cannabinoid varieties, creating extensive bud tunneling and wounds that allow entry of pathogens that can aid development and presence of bud rot. Damage to seeds is of lesser concern in hemp cultivars grown for grain and minimal risk is associated with hemp grown for fiber. Our ability to research hemp has only recently been allowed as production was largely suspended following World War II and, as such, there has been limited opportunity to develop information for empirically-based pest management recommendations. Further complicating development of integrated pest management (IPM) strategies are regulatory challenges associated with providing registration support to add hemp to pesticide labels, as it was not formally recognized as a crop by U.S. regulatory agencies until late 2019. Research needs and challenges to develop effective IPM programs for corn earworm on hemp are discussed here.


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


Sign in / Sign up

Export Citation Format

Share Document