Short Reversal of the Palaeomagnetic Field about 280 000 Years Ago at Long Valley, California

1989 ◽  
pp. 137-153 ◽  
Author(s):  
Joseph C. Liddicoat ◽  
Roy A. Bailey
Keyword(s):  
2005 ◽  
Author(s):  
John W. Ewert ◽  
Christopher J. Harpel ◽  
Suzanna K. Brooks

1974 ◽  
Author(s):  
L.M. Willey ◽  
J.R. O'Neil ◽  
J.B. Rapp
Keyword(s):  

2017 ◽  
Author(s):  
Graham D.M. Andrews ◽  
◽  
Abigail E. Martens ◽  
William Krugh ◽  
Sarah R. Brown

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jekwan Lee ◽  
Wonhyeok Heo ◽  
Myungjun Cha ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
...  

AbstractThe valley Hall effect (VHE) in two-dimensional (2D) van der Waals (vdW) crystals is a promising approach to study the valley pseudospin. Most experiments so far have used bound electron-hole pairs (excitons) through local photoexcitation. However, the valley depolarization of such excitons is fast, so that several challenges remain to be resolved. We address this issue by exploiting a unipolar VHE using a heterobilayer made of monolayer MoS2/WTe2 to exhibit a long valley-polarized lifetime due to the absence of electron-hole exchange interaction. The unipolar VHE is manifested by reduced photoluminescence at the MoS2 A exciton energy. Furthermore, we provide quantitative information on the time-dependent valley Hall dynamics by performing the spatially-resolved ultrafast Kerr-rotation microscopy; we find that the valley-polarized electrons persist for more than 4 nanoseconds and the valley Hall mobility exceeds 4.49 × 103 cm2/Vs, which is orders of magnitude larger than previous reports.


Author(s):  
Justin B. Peers ◽  
Michael K. Lindell ◽  
Christopher E. Gregg ◽  
Ashleigh K. Reeves ◽  
Andrew T. Joyner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document