A Model of Laminated Composite Plates Assuring the Continuity of Displacements and Transverse Shear Stresses

Author(s):  
M. Touratier ◽  
Q. Liu ◽  
P. Lory
Author(s):  
K. H. Lee ◽  
L. Cao

This paper describes a predictor-corrector theory based on a general higher-order layerwise model for the accurate prediction of the linear static and dynamic response of thick laminated composite plates and shells. The general polynomials introduced in the model account for the arbitrary variation of the transverse shear stresses across the thickness of each layer. The main purpose of the approach is to reduce the differences between the assumed variation of the transverse shear stresses provided by the constitutive equations and the computed variation of the same stresses from the equilibrium equations of elasticity. The present predictor-corrector layerwise model satisfies the continuity of the in-plane displacements and the transverse shear stresses at the interfaces. The numerical results for the bending and vibration of thick laminated composite plates and shells show that a high level of accuracy can be achieved with the same number of variables as that in Mindlin’s theory.


Author(s):  
Aniket Chanda ◽  
Utkarsh Chandel ◽  
Rosalin Sahoo ◽  
Neeraj Grover

In the present study, the electro-mechanical responses of smart laminated composite plates with piezoelectric materials are derived using a two-dimensional (2 D) displacement-based non-polynomial higher-order shear deformation theory. The kinematics of the mathematical model incorporates the deformation of laminates which account for the effects of transverse shear deformation and a non-linear variation of the in-plane displacements using inverse sine hyperbolic function of the thickness coordinate. The equilibrium equations are obtained using the minimization of energy principle known as the principle of minimum potential energy (PMPE) which is also based on a variational approach and the solutions are obtained using Navier’s solution technique for diaphragm supported smart laminated composite plates. The responses obtained in the form of deflection and stresses are compared with three dimensional (3 D) solutions and also with different polynomial and non-polynomial based higher-order theories in the literature. The transverse shear stresses are obtained using 3 D equilibrium equations of elasticity to enhance the accuracy of the present results. Various examples are numerically solved to establish the efficiency of the present model.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Atteshamuddin Shamshuddin Sayyad ◽  
Bharati Machhindra Shinde ◽  
Yuwaraj Marotrao Ghugal

AbstractThis study presents the thermoelastic analysis of laminated composite plates subjected to sinusoidal thermal load linearly varying across the thickness. Analytical solutions for thermal displacements and stresses are investigated by using a unified plate theory which includes different functions in terms of thickness coordinate to represent the effect of shear deformation. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Governing equations of equilibrium and associated boundary conditions of the theory are obtained using the principle of virtual work. The Navier solution for simply supported laminated composite plates has been developed. Numerical results are presented to demonstrate the thermal response of the laminated composite plates.


2020 ◽  
Vol 54 (29) ◽  
pp. 4691-4708
Author(s):  
Aniket Chanda ◽  
Rosalin Sahoo

The analytical solution for static analysis of laminated composite plate integrated with piezoelectric fiber reinforced composite actuator is obtained using a recently developed Trigonometric Zigzag theory. The kinematic field consists of five independent field variables accommodating non-linear variation of transverse shear strains through the thickness of the laminated composite plate. The principle of minimum potential energy is adopted to derive the governing equations of equilibrium. Navier’s solution technique is employed to convert the system of coupled partial differential equations into a system of algebraic equations. The electric potential is assumed to vary linearly through the thickness of the piezoelectric layer. The analytical formulation also does not include voltage as an additional primary variable. The response in the form of deflection and stresses are obtained for smart composite plates subjected to electro-mechanical loads and compared with the elasticity solutions and available results reported by other researchers in the existing literature. The transverse shear stresses are accurately determined by an efficient post-processing technique of integrating the equilibrium equations of elasticity. Parametric studies on actuation in the response of the smart composite plate are also presented graphically in order to have a clear understanding of the static behavior.


2012 ◽  
Vol 248 ◽  
pp. 379-383
Author(s):  
Rasoul Khandan ◽  
Philip Sewell ◽  
Siamak Noroozi ◽  
Mohammad Reza Ramazani

Considering the non-linearity, complexity and anisotropy of constitutive equations in composite materials, numerical methods are essential to evaluate the behaviour of this material. The finite element method (FEM) is a powerful computational technique for the solution of differential and integral equations that arise in various fields of engineering and applied science such as composite materials. Here, an FEM tool is designed to analyse non-linearity in the behaviour of composites caused by the effect of transverse shear and twist in laminated composite plates. The tool is established by using FEM for composites in ABAQUS combined with programming in Python to run the tests for all possible fibre orientations in laminated composite plates. It is shown that the tool has the ability to design laminated composite plates by considering the effect of transverse shear and the tool’s output provides results for all different fibre orientations. It is demonstrated that there is good agreement between numerical results obtained from this tool and experimental results. The advantages of the tool give designers the opportunity to use this tool for wide range of products.


2014 ◽  
Vol 607 ◽  
pp. 731-734
Author(s):  
Song Xiang

In present paper, deflection and stress of laminated composite plates are analyzed by a meshless local collocation method based on inverse multiquadrics radial basis function. This method approximates the governing equations based on first-order shear deformation theory using the nodes in the support domain of any data center. Transverse displacement, normal stresses, and shear stresses of the simply supported laminated composite plates under sinusoidal load are computed by the present method. The convergence characteristics are studied by several numerical examples. The present results are compared with available published results which demonstrate the accuracy and efficiency of present method.


2014 ◽  
Vol 592-594 ◽  
pp. 451-455
Author(s):  
Nagaraj Murugesan ◽  
Vasudevan Rajamohan

In this study the combined effect of thermal environment and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated plates are numerically analyzed. The finite element modeling of laminated composite plates and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the present finite element analysis is demonstrated by comparing the interlaminar stresses developed due to mechanical loadings derived using the present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of thermal environment on interlaminar stresses generated in asymmetric cross-ply composite laminated plates of different length to thickness ratios (L/H) and boundary conditions with identical mechanical loadings. It is observed that the elevated thermal environment under identical mechanical loading lead to higher interlaminar shear stresses varying with length to depth ratio and boundary conditions in asymmetric cross-ply laminated composite plates.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Y. F. Zheng ◽  
L. Q. Deng

The nonlinear free vibration for viscoelastic cross-ply moderately thick laminated composite plates under considering transverse shear deformation and damage effect is investigated. Based on the Timoshenko-Mindlin theory, strain-equivalence hypothesis, and Boltzmann superposition principle, the nonlinear free vibration governing equations for viscoelastic moderately thick laminated plates with damage are established and solved by the Galerkin method, Simpson integration, Newton-Cotes, Newmark, and iterative methods. In the numerical results, the effects of transverse shear, material viscoelasticity, span-thickness ratio, aspect ratio, and damage effect on the nonlinear free vibrating frequency of the viscoelastic cross-ply moderately thick laminated plates are discussed.


Sign in / Sign up

Export Citation Format

Share Document