EMBRAPA’s Food-Feed-Bioenergy Production Systems

Author(s):  
Levon Yeganiantz ◽  
Adhemar Brandini
GCB Bioenergy ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 427-443 ◽  
Author(s):  
Sierk de Jong ◽  
Mark Staples ◽  
Carla Grobler ◽  
Vassilis Daioglou ◽  
Robert Malina ◽  
...  

2013 ◽  
Vol 105 (2) ◽  
pp. 364-376 ◽  
Author(s):  
Grace L. Miner ◽  
Neil C. Hansen ◽  
Daniel Inman ◽  
Lucretia A. Sherrod ◽  
G. A. Peterson

Resources ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 7 ◽  
Author(s):  
Elena Fedorova ◽  
Kirsi Aaltonen ◽  
Eva Pongrácz

Supply chain risk management has been well researched over the years. However, management of social risks in bioenergy supply chains has been studied less in contemporary research. The ability of bioenergy companies to identify, properly address, and communicate social sustainability has become crucial for many global producers. In order to meet current EU’s energy and climate targets, the development of sustainable bioenergy production is vital. However, over last decade, research of bioenergy production supply chains has indicated that upstream areas of global bioenergy production systems are vulnerable in terms of social sustainability risks. The main objective of this research was to demonstrate how the socially sustainable supply chain practices in bioenergy supply chains can help a production company manage social risks and resources-use related conflicts upstream of the supply chain. These practices can be applied in the process of negotiation between bioenergy producers, local authorities, and communities for creating win-win situations for all parties while planning new bioenergy production systems. This study pays special attention to social sustainability risks at the upstream of the supply chain in countries of raw material origin. Use of social sustainability practices intends to help identify, assess, and address social risks of supply chain activities for bioenergy companies. Moreover, such practices aim at supporting companies and their stakeholders in making right choices and preparing effective strategies ahead of time. We based our research on empirical evidence and offer solutions to multi-national bioenergy production companies on how to manage social risks, allowing them to make the right decisions and necessary adjustments before entering potential markets. Our findings show that even avoidance of market entrance can carry sustainability-related social risks for both the company and the local communities. We suggest that although the financial element plays an important role in decision-making, the no-go decision often means missed opportunities for local communities to improve their respective sustainability states.


Author(s):  
Amin Mirkouei ◽  
Kamran Kardel

The techno-economic analysis outcomes of bioenergy production compared with traditional energy indicate that the existing production technologies are not promising, however environmental analyses demonstrate that bioenergy products support cross-cutting sustainability and strategic analysis efforts. Therefore, utilization of bio-products, such as bio-oil and biofuels, is expected to increase in the near future due to environmental pressures. The overarching goal is to balance the primary dimensions of sustainability using both distributed and centralized conversion technologies. To this end, this research proposes a conceptual decision making framework to examine biomass-derived energy production system infrastructures and process-level operations. This framework encompasses three phases (i.e., 5-ton study, 50-ton study, and 500-ton study), using techno-economic, financial risks, cross-cutting assessments to scale-up bioenergy production, foster technology commercialization, and enhance sustainability benefits. The motivation behind the proposed framework lies in inherent limitations of the existing bioenergy conversion technologies and production systems. As an application of this research, a sustainable bioenergy economy fueled by innovative conversion technologies is examined in the state of Georgia to produce (at least one billion gasoline gallon equivalent) hydrocarbon biofuels from underutilized feedstocks (e.g., terrestrial and algae). The outcomes can address national priorities: promote energy security and reduce dependence on imported oil, promote the use of diverse domestic and clean energy resources, establish advanced bioindustries and rural economies, and mitigate environmental impacts from fossil fuel production and consumption.


Sign in / Sign up

Export Citation Format

Share Document