Active Galactic Nuclei and Particle Acceleration in Accretion Disks Around Massive Black Holes

1982 ◽  
pp. 323-345
Author(s):  
Minas Kafatos ◽  
Maurice M. Shapiro ◽  
R. Silberberg
2008 ◽  
Vol 17 (09) ◽  
pp. 1585-1590
Author(s):  
YA. ISTOMIN ◽  
H. SOL

Fast variability now observed in VHE gamma-rays from active galactic nuclei (PKS 2155–304, M87, Mkn 501) seems to require very small TeV emitting zones, even in the presence of a significant relativistic beaming. We explore the possibility to accelerate particles up to VHE energies in such small compact regions around massive black holes, taking into account the two places in the black hole surroundings where efficient acceleration can be expected during the accretion-ejection process, namely turbulent low-luminosity accretion disks and rotating magnetospheres.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
David Garofalo

While the basic laws of physics seem time-reversal invariant, our understanding of the apparent irreversibility of the macroscopic world is well grounded in the notion of entropy. Because astrophysics deals with the largest structures in the Universe, one expects evidence there for the most pronounced entropic arrow of time. However, in recent theoretical astrophysics work it appears possible to identify constructs with time-reversal symmetry, which is puzzling in the large-scale realm especially because it involves the engines of powerful outflows in active galactic nuclei which deal with macroscopic constituents such as accretion disks, magnetic fields, and black holes. Nonetheless, the underlying theoretical structure from which this accreting black hole framework emerges displays a time-symmetric harmonic behavior, a feature reminiscent of basic and simple laws of physics. While we may expect such behavior for classical black holes due to their simplicity, manifestations of such symmetry on the scale of galaxies, instead, surprise. In fact, we identify a parallel between the astrophysical tug-of-war between accretion disks and jets in this model and the time symmetry-breaking of a simple overdamped harmonic oscillator. The validity of these theoretical ideas in combination with this unexpected parallel suggests that black holes are more influential in astrophysics than currently recognized and that black hole astrophysics is a more fundamental discipline.


Astrophysics ◽  
2016 ◽  
Vol 59 (4) ◽  
pp. 439-448 ◽  
Author(s):  
M. Yu. Piotrovich ◽  
S. D. Buliga ◽  
Yu. N. Gnedin ◽  
A. G. Mikhailov ◽  
T. M. Natsvlishvili

1989 ◽  
Vol 136 ◽  
pp. 639-643
Author(s):  
Ervin J. Fenyves ◽  
Stephen N. Balog ◽  
David B. Cline ◽  
M. Atac

It is generally accepted that massive black holes are the most likely source for the energy radiated from active galactic nuclei, and may explain the enormous amount of energy emitted by quasars, radio galaxies, Seyfert galaxies, and BL Lacertid objects. Although the detailed mechanisms of the black hole formation in galactic nuclei are not clear at present, it seems to be quite possible that the formation of massive black holes is a general outcome of the evolution of galactic nuclei.


2015 ◽  
Vol 336 (10) ◽  
pp. 1013-1016 ◽  
Author(s):  
M. Yu. Piotrovich ◽  
Yu. N. Gnedin ◽  
N. A. Silant'ev ◽  
T. M. Natsvlishvili ◽  
S. D. Buliga

2015 ◽  
Vol 815 (1) ◽  
pp. 21 ◽  
Author(s):  
Mirko Krumpe ◽  
Takamitsu Miyaji ◽  
Bernd Husemann ◽  
Nikos Fanidakis ◽  
Alison L. Coil ◽  
...  

2011 ◽  
Vol 20 (3) ◽  
Author(s):  
P. Jovanović ◽  
V. Borka Jovanović ◽  
D. Borka

AbstractHere we analyze how the angular momenta (spins) of black holes in the centers of Active Galactic Nuclei (AGN) affect the shape of the FeK line emitted from their accretion disks. For that purpose, we compared the observed line profile in the case of radio galaxy 3C 405 (Cygnus A) with its profiles, obtained by numerical simulations based on ray-tracing method in the Kerr metric. Our results show that the spins of rotating central black holes of AGN have significant influence on their FeKα line shapes. Also, we found that in the case of Cygnus A the observed line is probably emitted from the innermost region of its slightly inclined accretion disk around very slowly rotating or even stationary central black hole.


2020 ◽  
Vol 493 (3) ◽  
pp. 3732-3743 ◽  
Author(s):  
Alexander J Dittmann ◽  
M Coleman Miller

ABSTRACT Accretion discs around active galactic nuclei (AGNs) are potentially unstable to star formation at large radii. We note that when the compact objects formed from some of these stars spiral into the central supermassive black hole (SMBH), there is no radiative feedback and therefore the accretion rate is not limited by radiation forces. Using a set of accretion disc models, we calculate the accretion rate on to the central SMBH in both gas and compact objects. We find that the time-scale for an SMBH to double in mass can decrease by factors ranging from ∼0.7 to as low as ∼0.1 in extreme cases, compared to gas accretion alone. Our results suggest that the formation of extremely massive black holes at high redshift may occur without prolonged super-Eddington gas accretion or very massive seed black holes. We comment on potential observational signatures as well as implications for other observations of AGNs.


Sign in / Sign up

Export Citation Format

Share Document