Effect of Deficiency of Cytochrome C Oxidase Assembly Peptide Cox17p on Mitochondrial Functions and Respiratory-Chain in Mice

2001 ◽  
pp. 795-796
Author(s):  
Yoshinori Takahashi ◽  
Koichiro Kako ◽  
Hidenori Arai ◽  
Akio Takehara ◽  
Eisuke Munekata
Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4961-4972 ◽  
Author(s):  
Norbert Gattermann ◽  
Stefan Retzlaff ◽  
Yan-Ling Wang ◽  
Götz Hofhaus ◽  
Jürgen Heinisch ◽  
...  

Mitochondrial iron overload in acquired idiopathic sideroblastic anemia (AISA) may be attributable to mutations of mitochondrial DNA (mtDNA), because these can cause respiratory chain dysfunction, thereby impairing reduction of ferric iron (Fe3+) to ferrous iron (Fe2+). The reduced form of iron is essential to the last step of mitochondrial heme biosynthesis. It is not yet understood to which part of the respiratory chain the reduction of ferric iron is linked. In two patients with AISA we identified point mutations of mtDNA affecting the same transmembrane helix within subunit I of cytochrome c oxidase (COX I; ie, complex IV of the respiratory chain). The mutations were detected by restriction fragment length polymorphism analysis and temperature gradient gel electrophoresis. One of the mutations involves a T → C transition in nucleotide position 6742, causing an amino acid change from methionine to threonine. The other mutation is a T → C transition at nt 6721, changing isoleucine to threonine. Both amino acids are highly conserved in a wide range of species. Both mutations are heteroplasmic, ie, they establish a mixture of normal and mutated mitochondrial genomes, which is typical of disorders of mtDNA. The mutations were present in bone marrow and whole blood samples, in isolated platelets, and in granulocytes, but appeared to be absent from T and B lymphocytes purified by immunomagnetic bead separation. They were not detected in buccal mucosa cells obtained by mouthwashes and in cultured skin fibroblasts examined in one of the patients. In both patients, this pattern of involvement suggests that the mtDNA mutation occurred in a self-renewing bone marrow stem cell with myeloid determination. Identification of two point mutations with very similar location suggests that cytochrome c oxidase plays an important role in the pathogenesis of AISA. COX may be the physiologic site of iron reduction and transport through the inner mitochondrial membrane.


2005 ◽  
Vol 51 (8) ◽  
pp. 621-627 ◽  
Author(s):  
Takuro Nunoura ◽  
Yoshihiko Sako ◽  
Takayoshi Wakagi ◽  
Aritsune Uchida

We partially purified and characterized the cytochrome aa3 from the facultatively aerobic and hyperthermophilic archaeon Pyrobaculum oguniense. This cytochrome aa3 showed oxygen consumption activity with N, N, N′, N′-tetramethyl-1,4-phenylenediamine and ascorbate as substrates, and also displayed bovine cytochrome c oxidase activity. These enzymatic activities of cytochrome aa3 were inhibited by cyanide and azide. This cytochrome contained heme As, but not typical heme A. An analysis of trypsin-digested fragments indicated that 1 subunit of this cytochrome was identical to the gene product of subunit I of the SoxM-type heme – copper oxidase (poxC). This is the first report of a terminal oxidase in hyperthermophilic crenarchaeon belonging to the order Thermoproteales.Key words: aerobic respiratory chain, terminal oxidase, Archaea, hyperthermophile, Pyrobaculum.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4961-4972 ◽  
Author(s):  
Norbert Gattermann ◽  
Stefan Retzlaff ◽  
Yan-Ling Wang ◽  
Götz Hofhaus ◽  
Jürgen Heinisch ◽  
...  

Abstract Mitochondrial iron overload in acquired idiopathic sideroblastic anemia (AISA) may be attributable to mutations of mitochondrial DNA (mtDNA), because these can cause respiratory chain dysfunction, thereby impairing reduction of ferric iron (Fe3+) to ferrous iron (Fe2+). The reduced form of iron is essential to the last step of mitochondrial heme biosynthesis. It is not yet understood to which part of the respiratory chain the reduction of ferric iron is linked. In two patients with AISA we identified point mutations of mtDNA affecting the same transmembrane helix within subunit I of cytochrome c oxidase (COX I; ie, complex IV of the respiratory chain). The mutations were detected by restriction fragment length polymorphism analysis and temperature gradient gel electrophoresis. One of the mutations involves a T → C transition in nucleotide position 6742, causing an amino acid change from methionine to threonine. The other mutation is a T → C transition at nt 6721, changing isoleucine to threonine. Both amino acids are highly conserved in a wide range of species. Both mutations are heteroplasmic, ie, they establish a mixture of normal and mutated mitochondrial genomes, which is typical of disorders of mtDNA. The mutations were present in bone marrow and whole blood samples, in isolated platelets, and in granulocytes, but appeared to be absent from T and B lymphocytes purified by immunomagnetic bead separation. They were not detected in buccal mucosa cells obtained by mouthwashes and in cultured skin fibroblasts examined in one of the patients. In both patients, this pattern of involvement suggests that the mtDNA mutation occurred in a self-renewing bone marrow stem cell with myeloid determination. Identification of two point mutations with very similar location suggests that cytochrome c oxidase plays an important role in the pathogenesis of AISA. COX may be the physiologic site of iron reduction and transport through the inner mitochondrial membrane.


2003 ◽  
Vol 93 (3) ◽  
pp. 142-146 ◽  
Author(s):  
Jose-Ramon Alonso ◽  
Francesc Cardellach ◽  
Sònia López ◽  
Jordi Casademont ◽  
Òscar Miró

Microbiology ◽  
1996 ◽  
Vol 142 (7) ◽  
pp. 1757-1763 ◽  
Author(s):  
K. Nagata ◽  
S. Tsukita ◽  
T. Tamura ◽  
N. Sone

1995 ◽  
Vol 17 (2) ◽  
pp. 117-121 ◽  
Author(s):  
Dimitrios I. Zafeiriou ◽  
Berthold Koletzko ◽  
Wolfgang Mueller-Felber ◽  
Irene Paetzke ◽  
Georg Kueffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document