Thermal Expansion and Wear Properties of Centrifugally Produced Al-Si/SiC MMCs

Author(s):  
H. Akbulut ◽  
M. Durman
Author(s):  
J. Cooper ◽  
O. Popoola ◽  
W. M. Kriven

Nickel sulfide inclusions have been implicated in the spontaneous fracture of large windows of tempered plate glass. Two alternative explanations for the fracture-initiating behaviour of these inclusions have been proposed: (1) the volume increase which accompanies the α to β phase transformation in stoichiometric NiS, and (2) the thermal expansion mismatch between the nickel sulfide phases and the glass matrix. The microstructure and microchemistry of the small inclusions (80 to 250 μm spheres), needed to determine the cause of fracture, have not been well characterized hitherto. The aim of this communication is to report a detailed TEM and EDS study of the inclusions.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-1109-C8-1113
Author(s):  
T.R. Finlayson, ◽  
M. Liu ◽  
T.F. Smith
Keyword(s):  

1978 ◽  
Vol 39 (C6) ◽  
pp. C6-406-C6-407 ◽  
Author(s):  
T. Fukase ◽  
T. Kobayashi ◽  
M. Isino ◽  
N. Toyota ◽  
Y. Muto

1980 ◽  
Vol 41 (C8) ◽  
pp. C8-875-C8-877
Author(s):  
E. Girt ◽  
P. Tomić ◽  
A. Kuršumović ◽  
T. Mihać-Kosanović

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1903-C8-1904
Author(s):  
S. U. Jen ◽  
Y. D. Yao ◽  
H. Y. Pai

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-159-C8-160
Author(s):  
T. Suzuki ◽  
T. Kanomata ◽  
T. Kaneko

Author(s):  
H. Sh. Hammood ◽  
S. S. Irhayyim ◽  
A. Y. Awad ◽  
H. A. Abdulhadi

Multiwall Carbon nanotubes (MWCNTs) are frequently attractive due to their novel physical and chemical characteristics, as well as their larger aspect ratio and higher conductivity. Therefore, MWCNTs can allow tremendous possibilities for the improvement of the necessarily unique composite materials system. The present work deals with the fabrication of Cu-Fe/CNTs hybrid composites manufactured by powder metallurgy techniques. Copper powder with 10 vol. % of iron powder and different volume fractions of Multi-Wall Carbon Nanotubes (MWCNTs) were mixed to get hybrid composites. The hybrid composites were fabricated by adding 0.3, 0.6, 0.9, and 1.2 vol.% of MWCNTs to Cu- 10% Fe mixture using a mechanical mixer. The samples were compressed under a load of 700 MPa using a hydraulic press to compact the samples. Sintering was done at 900°C for 2 h at 5ºC/min heating rate. The microscopic structure was studied using a Scanning Electron Microscope (SEM). The effect of CNTs on the mechanical and wear properties, such as micro-hardness, dry sliding wear, density, and porosity were studied in detail. The wear tests were carried out at a fixed time of 20 minutes while the applied loads were varied (5, 10, 15, and 20 N). SEM images revealed that CNTs were uniformly distributed with relative agglomeration within the Cu/Fe matrix. The results showed that the hardness, density, and wear rates decreased while the percentage of porosity increased with increasing the CNT volume fraction. Furthermore, the wear rate for all the CNTs contents increased with the applied load.


1981 ◽  
Vol 6 ◽  
Author(s):  
J.R. Mclaren ◽  
R.W. Davidge ◽  
I. Titchell ◽  
K. Sincock ◽  
A. Bromley

ABSTRACTHeating to temperatures up to 500°C, gives a reduction in Young's modulus and increase in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anisotropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined.


Sign in / Sign up

Export Citation Format

Share Document